تاثیر ویژگی‌های ریزساختار بر رفتار فولاد با سمانتیت کروی‌شده با استفاده از روش پلاستیسیته کریستالی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، دانشکده مهندسی مکانیک، دانشگاه صنعتی شریف، تهران، ایران

2 استاد / دانشکده مهندسی مکانیک دانشگاه صنعتی شریف

چکیده

روش پلاستیسیته کریستالی به عنوان یک ابزار قدرتمند، بطور گسترده‌ای در شبیه‌سازی رفتار و ریز‌ساختار ورق‌های فولادی تک فاز فریتی و یا ورق‌های فولادی دوفاز فریتی-مارتنزیتی و فریتی-پرلیتی مورد استفاده قرار گرفته‌است. در این پژوهش برای اولین بار به مدل‌سازی 3 بعدی رفتار ورق‌های فولادی با سمانتیت کروی‌شده با قابلیت شکل‌پذیری بالا و بررسی تاثیر ویژگی‌های ریزساختار در رفتار آن با استفاده از روش اجزای محدود کریستالی پرداخته شده‌است. برای این منظور یک نرم‌افزار پیش‌پردازش با قابلیت شبیه‌سازی ویژگی‌های ریزساختار این نوع فولاد طراحی شد. خواص ذرات سمانتیت به صورت ترد و شکننده منظور شد. برای توصیف رفتار دانه‌های نرم فریت نیز بعد از اعمال بافت تصادفی به آنها، از روش پلاستیسته کریستالی و زیربرنامه هوانگ و نرم‌افزار آباکوس استفاده شد. بعد از کالیبراسیون و استخراج متغیرهای سخت‌شوندگی، به بررسی تاثیر برخی از ویژگی‌های ریزساختار پرداخته شد. محاسبات نشان داد که با افزایش درصد فاز سمانتیت تنش‌ها بطور قابل ملاحظه‌ای افزایش می‌یابد. همچنین تاثیر وجود بافت غالب در راستای نورد باعث کاهش تنش‌ها شد. نوار ذرات سمانتیت در راستای جانبی عمود بر راستای نورد نیز به علت تجمع نابجایی‌ها و افزایش تمرکز تنش در این منطقه باعث بالارفتن تنش‌های ماده می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of microstructure features on the mechanical properties of spheroidized steel by crystal plasticity method.

نویسنده [English]

  • Mona Einolghozati 1
1 Phd student, Sharif university of technology/Department of mechanical engineering
چکیده [English]

Finite element method based on crystal plasticity becomes a powerful tool in investigating mechanical properties of ferritic steel and dual phase steel. In this work, a three-dimensional, microstructure-based representative volume element method is employed for simulating the mechanical properties of the alloy steel 42CrMo4, a typical spheroidized ferrite–cementite steel. A computer program has been developed to generate automatic models considering microstructural features such as grain size, volume fraction, distribution of particles, ferrite texture and carbide bands in ferrite–cementite steel. The spheroidized cementite is generally without plastic deformation under the normal tensile test even at the fracture moment. Crystal plasticity constitutive law is employed to model the ferrite grains employing Huang’s code in Abaqus software. Material hardening parameters are determined and calibrated by comparing simulated tensile tests with experimental stress-strain curves. To study the influence of microstructure features and the capability of this method to predict the material mechanical behavior, several 3D samples including different microstructural features are modeled. The results show that when the proportion of cementite in the steel increases, the strength of the steel increases accordingly. Although in this study a random texture is assigned to crystalline aggregates, the code is capable of working with any texture data. Also, effects of ferrite grain size and carbide band which leads to the microstructure inhomogeneity and stress concentration are studied.

کلیدواژه‌ها [English]

  • Double phase steel
  • Spheroidized cementite
  • Crystal plasticity
  • 3D modeling
  • Carbide band
[1] G. Krauss, Steels: processing, structure, and performance, Asm International, 2015.
[2] L. Anand, S. Kalidindi, The process of shear band formation in plane strain compression of fcc metals: effects of crystallographic texture, Mechanics of Materials, 17(2-3) (1994) 223-243.
[3] X. You, T. Connolley, P. McHugh, H. Cuddy, C. Motz, A combined experimental and computational study of deformation in grains of biomedical grade 316LVM stainless steel, Acta materialia, 54(18) (2006) 4825-4840.
[4] J. Kadkhodapour, A. Butz, S. Ziaei-Rad, S. Schmauder, A micro mechanical study on failure initiation of dual phase steels under tension using single crystal plasticity model, International Journal of Plasticity, 27(7) (2011) 1103-1125.
[5] T. Kanit, S. Forest, I. Galliet, V. Mounoury, D. Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach, International Journal of solids and structures, 40(13-14) (2003) 3647-3679.
[6] A. Ramazani, K. Mukherjee, A. Schwedt, P. Goravanchi, U. Prahl, W. Bleck, Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels, International Journal of Plasticity, 43 (2013) 128-152.
[7] G. Laschet, P. Fayek, T. Henke, H. Quade, U. Prahl, Derivation of anisotropic flow curves of ferrite–pearlite pipeline steel via a two-level homogenisation scheme, Materials Science and Engineering: A, 566 (2013) 143-156.
[8] W. Drugan, J. Willis, A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, Journal of the Mechanics and Physics of Solids, 44(4) (1996) 497-524.
[9] A.A. Gusev, Representative volume element size for elastic composites: a numerical study, Journal of the Mechanics and Physics of Solids, 45(9) (1997) 1449-1459.
[10] J. Tyrus, M. Gosz, E. DeSantiago, A local finite element implementation for imposing periodic boundary conditions on composite micromechanical models, International Journal of Solids and Structures, 44(9) (2007) 2972-2989.
[11] Y. Yan, L. Geng, A. Li, Experimental and numerical studies of the effect of particle size on the deformation behavior of the metal matrix composites, Materials Science and Engineering: A, 448(1-2) (2007) 315-325.
[12] H. Qing, 2D micromechanical analysis of SiC/Al metal matrix composites under tensile, shear and combined tensile/shear loads, Materials & Design, 51 (2013) 438-447.
[13] X. Zhuang, S. Ma, Z. Zhao, A microstructure-based macro-micro multi-scale fine-blanking simulation of ferrite-cementite steels, International Journal of Mechanical Sciences, 128 (2017) 414-427.
[14] O. Amelirad, A. Assempour, Experimental and crystal plasticity evaluation of grain size effect on formability of austenitic stainless steel sheets, Journal of Manufacturing Processes, 47 (2019) 310-323.
[15] C. Zheng, L. Li, Y. Wang, W. Yang, Z. Sun, Micromechanical behavior of eutectoid steel quantified by an analytical model calibrated by in situ synchrotron-based X-ray diffraction, Materials Science and Engineering: A, 631 (2015) 181-188.
[16] R.J. Asaro, Crystal plasticity,  (1983).
[17] J.W. Hutchinson, Bounds and self-consistent estimates for creep of polycrystalline materials, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 348(1652) (1976) 101-127.
[18] D. Peirce, R.J. Asaro, A. Needleman, Material rate dependence and localized deformation in crystalline solids, Acta metallurgica, 31(12) (1983) 1951-1976.