[1] G. Krauss, Steels: processing, structure, and performance, Asm International, 2015.
[2] L. Anand, S. Kalidindi, The process of shear band formation in plane strain compression of fcc metals: effects of crystallographic texture, Mechanics of Materials, 17(2-3) (1994) 223-243.
[3] X. You, T. Connolley, P. McHugh, H. Cuddy, C. Motz, A combined experimental and computational study of deformation in grains of biomedical grade 316LVM stainless steel, Acta materialia, 54(18) (2006) 4825-4840.
[4] J. Kadkhodapour, A. Butz, S. Ziaei-Rad, S. Schmauder, A micro mechanical study on failure initiation of dual phase steels under tension using single crystal plasticity model, International Journal of Plasticity, 27(7) (2011) 1103-1125.
[5] T. Kanit, S. Forest, I. Galliet, V. Mounoury, D. Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach, International Journal of solids and structures, 40(13-14) (2003) 3647-3679.
[6] A. Ramazani, K. Mukherjee, A. Schwedt, P. Goravanchi, U. Prahl, W. Bleck, Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels, International Journal of Plasticity, 43 (2013) 128-152.
[7] G. Laschet, P. Fayek, T. Henke, H. Quade, U. Prahl, Derivation of anisotropic flow curves of ferrite–pearlite pipeline steel via a two-level homogenisation scheme, Materials Science and Engineering: A, 566 (2013) 143-156.
[8] W. Drugan, J. Willis, A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, Journal of the Mechanics and Physics of Solids, 44(4) (1996) 497-524.
[9] A.A. Gusev, Representative volume element size for elastic composites: a numerical study, Journal of the Mechanics and Physics of Solids, 45(9) (1997) 1449-1459.
[10] J. Tyrus, M. Gosz, E. DeSantiago, A local finite element implementation for imposing periodic boundary conditions on composite micromechanical models, International Journal of Solids and Structures, 44(9) (2007) 2972-2989.
[11] Y. Yan, L. Geng, A. Li, Experimental and numerical studies of the effect of particle size on the deformation behavior of the metal matrix composites, Materials Science and Engineering: A, 448(1-2) (2007) 315-325.
[12] H. Qing, 2D micromechanical analysis of SiC/Al metal matrix composites under tensile, shear and combined tensile/shear loads, Materials & Design, 51 (2013) 438-447.
[13] X. Zhuang, S. Ma, Z. Zhao, A microstructure-based macro-micro multi-scale fine-blanking simulation of ferrite-cementite steels, International Journal of Mechanical Sciences, 128 (2017) 414-427.
[14] O. Amelirad, A. Assempour, Experimental and crystal plasticity evaluation of grain size effect on formability of austenitic stainless steel sheets, Journal of Manufacturing Processes, 47 (2019) 310-323.
[15] C. Zheng, L. Li, Y. Wang, W. Yang, Z. Sun, Micromechanical behavior of eutectoid steel quantified by an analytical model calibrated by in situ synchrotron-based X-ray diffraction, Materials Science and Engineering: A, 631 (2015) 181-188.
[16] R.J. Asaro, Crystal plasticity, (1983).
[17] J.W. Hutchinson, Bounds and self-consistent estimates for creep of polycrystalline materials, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 348(1652) (1976) 101-127.
[18] D. Peirce, R.J. Asaro, A. Needleman, Material rate dependence and localized deformation in crystalline solids, Acta metallurgica, 31(12) (1983) 1951-1976.