[1] Z. Hu, G. Tong, D. Lin, C. Chen, H. Guo, J. Xu, L. Zhou, Graphene-reinforced metal matrix nanocomposites–a review, Materials Science and Technology, 32(9) (2016) 930-953.
[2] J. Liu, U. Khan, J. Coleman, B. Fernandez, P. Rodriguez, S. Naher, D. Brabazon, Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: powder synthesis and prepared composite characteristics, Materials & design, 94 (2016) 87-94.
[3] S. Shin, H. Choi, J. Shin, D. Bae, Strengthening behavior of few-layered graphene/aluminum composites, Carbon, 82 (2015) 143-151.
[4] K. Duan, L. Li, Y. Hu, X. Wang, Interface mechanical properties of graphene reinforced copper nanocomposites, Materials Research Express, 4(11) (2017) 115020.
[5] Ö. Güler, N. Bağcı, A short review on mechanical properties of graphene reinforced metal matrix composites, Journal of Materials Research and Technology, (2020).
[6] S. Gong, H. Ni, L. Jiang, Q. Cheng, Learning from nature: constructing high performance graphene-based nanocomposites, Materials Today, 20(4) (2017) 210-219.
[7] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets, Nature, 446(7131) (2007) 60-63.
[8] P. Liu, Z. Jin, G. Katsukis, L.W. Drahushuk, S. Shimizu, C.-J. Shih, E.D. Wetzel, J.K. Taggart-Scarff, B. Qing, K.J. Van Vliet, Layered and scrolled nanocomposites with aligned semi-infinite graphene inclusions at the platelet limit, Science, 353(6297) (2016) 364-367.
[9] S. Zhang, P. Huang, F. Wang, Graphene-boundary strengthening mechanism in Cu/graphene nanocomposites: A molecular dynamics simulation, Materials & Design, 190 (2020) 108555.
[10] X. Liu, F. Wang, W. Wang, H. Wu, Interfacial strengthening and self-healing effect in graphene-copper nanolayered composites under shear deformation, Carbon, 107 (2016) 680-688.
[11] X. Xia, Y. Su, Z. Zhong, G.J. Weng, A unified theory of plasticity, progressive damage and failure in graphene-metal nanocomposites, International journal of plasticity, 99 (2017) 58-80.
[12] S. Yan, S. Dai, X. Zhang, C. Yang, Q. Hong, J. Chen, Z. Lin, Investigating aluminum alloy reinforced by graphene nanoflakes, Materials Science and Engineering: A, 612 (2014) 440-444.
[13] Z. Li, Q. Guo, Z. Li, G. Fan, D.-B. Xiong, Y. Su, J. Zhang, D. Zhang, Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure, Nano letters, 15(12) (2015) 8077-8083.
[14] D.-B. Xiong, M. Cao, Q. Guo, Z. Tan, G. Fan, Z. Li, D. Zhang, High content reduced graphene oxide reinforced copper with a bioinspired nano-laminated structure and large recoverable deformation ability, Scientific reports, 6(1) (2016) 1-8.
[15] Y. Kim, J. Lee, M.S. Yeom, J.W. Shin, H. Kim, Y. Cui, J.W. Kysar, J. Hone, Y. Jung, S. Jeon, Strengthening effect of single-atomic-layer graphene in metal–graphene nanolayered composites, Nature communications, 4 (2013) 2114.
[16] S. Feng, Q. Guo, Z. Li, G. Fan, Z. Li, D.-B. Xiong, Y. Su, Z. Tan, J. Zhang, D. Zhang, Strengthening and toughening mechanisms in graphene-Al nanolaminated composite micro-pillars, Acta Materialia, 125 (2017) 98-108.
[17] Z. Li, X. Fu, Q. Guo, L. Zhao, G. Fan, Z. Li, D.-B. Xiong, Y. Su, D. Zhang, Graphene quality dominated interface deformation behavior of graphene-metal composite: the defective is better, International Journal of Plasticity, 111 (2018) 253-265.
[18] L. Zhao, Q. Guo, Z. Li, Z. Li, G. Fan, D.-B. Xiong, Y. Su, J. Zhang, Z. Tan, D. Zhang, Strain-rate dependent deformation mechanism of graphene-Al nanolaminated composites studied using micro-pillar compression, International Journal of Plasticity, 105 (2018) 128-140.
[19] W. Zhou, Y. Fan, X. Feng, K. Kikuchi, N. Nomura, A. Kawasaki, Creation of individual few-layer graphene incorporated in an aluminum matrix, Composites Part A: Applied Science and Manufacturing, 112 (2018) 168-177.
[20] X. Mu, H. Cai, H. Zhang, Q. Fan, Z. Zhang, Y. Wu, Y. Ge, D. Wang, Interface evolution and superior tensile properties of multi-layer graphene reinforced pure Ti matrix composite, Materials & Design, 140 (2018) 431-441.
[21] Y. Rong, H. P. He, L. Zhang, N. Li, Y. C. Zhu, Molecular dynamics studies on the strengthening mechanism of Al matrix composites reinforced by grapnene nanoplatelets, Computational Materials Science, 153 (2018) 48-56.
[22] N. Silvestre, B. Faria, J.N.C. Lopes, Compressive behavior of CNT-reinforced aluminum composites using molecular dynamics, Composites Science and Technology, 90 (2014) 16-24.
[23] B.K. Choi, G.H. Yoon, S. Lee, Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading, Composites Part B: Engineering, 91 (2016) 119-125.
[24] S. Kumar, Graphene Engendered aluminium crystal growth and mechanical properties of its composite: An atomistic investigation, Materials Chemistry and Physics, 208 (2018) 41-48.
[25] S. Kumar, S.K. Pattanayek, S.K. Das, Reactivity-Controlled Aggregation of Graphene Nanoflakes in Aluminum Matrix: Atomistic Molecular Dynamics Simulation, The Journal of Physical Chemistry C, 123(29) (2019) 18017-18027.
[26] R. Rezaei, C. Deng, H. Tavakoli-Anbaran, M. Shariati, Deformation twinning-mediated pseudoelasticity in metal–graphene nanolayered membrane, Philosophical Magazine Letters, 96(8) (2016) 322-329.
[27] K. Duan, F. Zhu, K. Tang, L. He, Y. Chen, S. Liu, Effects of chirality and number of graphene layers on the mechanical properties of graphene-embedded copper nanocomposites, Computational Materials Science, 117 (2016) 294-299.
[28] X. Liu, F. Wang, H. Wu, W. Wang, Strengthening metal nanolaminates under shock compression through dual effect of strong and weak graphene interface, Applied Physics Letters, 104(23) (2014) 231901.
[29] R. Rezaei, Tensile mechanical characteristics and deformation mechanism of metal-graphene nanolayered composites, Computational Materials Science, 151 (2018) 181-188.
[30] Y. Rong, H. He, L. Zhang, N. Li, Y. Zhu, Molecular dynamics studies on the strengthening mechanism of Al matrix composites reinforced by grapnene nanoplatelets, Computational Materials Science, 153 (2018) 48-56.
[31] J.-Q. Zhu, X. Liu, Q.-S. Yang, Dislocation-blocking mechanism for the strengthening and toughening of laminated graphene/Al composites, Computational Materials Science, 160 (2019) 72-81.
[32] M. Mendelev, M. Kramer, C.A. Becker, M. Asta, Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu, Philosophical Magazine, 88(12) (2008) 1723-1750.
[33] T.C. O’Connor, J. Andzelm, M.O. Robbins, AIREBO-M: A reactive model for hydrocarbons at extreme pressures, The Journal of chemical physics, 142(2) (2015) 024903.
[34] D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, Journal of Physics: Condensed Matter, 14(4) (2002) 783.
[35] A.P. Thompson, S.J. Plimpton, W. Mattson, General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions, The Journal of chemical physics, 131(15) (2009) 154107.
[36] A.S. Visualization, analysis of atomistic simulation data with OVITO-the Open Visualization Tool Modelling Simul, Mater. Sci. Eng, 18 (2010) 015012.
[37] R. Rezaei, H. Tavakoli-Anbaran, M. Shariati, Mechanical Characteristics and Failure Mechanism of Nano-Single Crystal Aluminum Based on Molecular Dynamics Simulations: Strain Rate and Temperature Effects, Journal of Solid Mechanics, 9(4) (2017) 794-801.
[38] R. Rezaei, M. Shariati, H. Tavakoli-Anbaran, Mechanical characteristics and deformation mechanism of boron nitride nanotube reinforced metal matrix nanocomposite based on molecular dynamics simulations, Journal of Materials Research, 33(12) (2018) 1733-1741.
[39] V. Palermo, I.A. Kinloch, S. Ligi, N.M. Pugno, Nanoscale mechanics of graphene and graphene oxide in composites: a scientific and technological perspective, Advanced Materials, 28(29) (2016) 6232-6238.
[40] J. Zhang, G. Liu, J. Sun, Strain rate effects on the mechanical response in multi-and single-crystalline Cu micropillars: grain boundary effects, International Journal of Plasticity, 50 (2013) 1-17.
[41] H. Daneshmand, M. Rezaeinasab, M. Asgary, Wettability alteration and retention of mixed polymer-grafted silica nanoparticles onto oil-wet porous medium, Petroleum Science, (2021).
[42] H. Daneshmand, M. Araghchi, M. Asgary, A spray pyrolysis method for fabrication of superhydrophobic copper substrate based on modified-alumina powder by fatty acid, Journal of Particle Science & Technology, 6(1) (2020) 25-36.
[43] H. Daneshmand, M. Araghchi, M. Asgary, M. Karimi, M. Torab-Mostaedi, New insight into adsorption mechanism of nickel-ammonium complex on the growth of nickel surfaces with hierarchical nano/microstructure, Results in Surfaces and Interfaces, (2021) 100014.