[1] H. Sheykhlou, S. Jafarmadar, S. Khalilarya, Design and parametric study of a novel solar-driven trigeneration application utilizing a heliostat field with thermal energy storage, International Journal of Energy Research, n/a(n/a).
[2] A. Zeynali, A. Akbari, M. Khalilian, Investigation of the performance of modified organic Rankine cycles (ORCs) and modified trilateral flash cycles (TFCs) assisted by a solar pond, Solar Energy, 182 (2019) 361-381.
[3] K. Mohammadi, J.G. McGowan, Thermoeconomic analysis of multi-stage recuperative Brayton cycles: Part II–Waste energy recovery using CO2 and organic Rankine power cycles, Energy Conversion and Management, 185 (2019) 920-934.
[4] K. Mohammadi, J.G. McGowan, M. Saghafifar, Thermoeconomic analysis of multi-stage recuperative Brayton power cycles: Part I-hybridization with a solar power tower system, Energy conversion and Management, 185 (2019) 898-919.
[5] Y. Ma, T. Morozyuk, M. Liu, J. Yan, J. Liu, Optimal integration of recompression supercritical CO2 Brayton cycle with main compression intercooling in solar power tower system based on exergoeconomic approach, Applied energy, 242 (2019) 1134-1154.
[6] J.-Q. Guo, M.-J. Li, J.-L. Xu, J.-J. Yan, K. Wang, Thermodynamic performance analysis of different supercritical Brayton cycles using CO2-based binary mixtures in the molten salt solar power tower systems, Energy, 173 (2019) 785-798.
[7] V. Zare, M. Hasanzadeh, Energy and exergy analysis of a closed Brayton cycle-based combined cycle for solar power tower plants, Energy conversion and management, 128 (2016) 227-237.
[8] H. Habibi, M. Zoghi, A. Chitsaz, K. Javaherdeh, M. Ayazpour, E. Bellos, Working fluid selection for regenerative supercritical Brayton cycle combined with bottoming ORC driven by molten salt solar power tower using energy–exergy analysis, Sustainable Energy Technologies and Assessments, 39 (2020) 100699.
[9] H. Ghiasirad, H. Rostamzadeh, S. Nasri, Design and Evaluation of a New Solar Tower-Based Multi-generation System: Part I, Thermal Modeling, in: Integration of Clean and Sustainable Energy Resources and Storage in Multi-Generation Systems, Springer, 2020, pp. 83-102.
[10] H. Ghiasirad, H. Rostamzadeh, S. Nasri, Design and Evaluation of a New Solar Tower-Based Multi-generation System: Part II, Exergy and Exergoeconomic Modeling, in: Integration of Clean and Sustainable Energy Resources and Storage in Multi-Generation Systems, Springer, 2020, pp. 103-120.
[11] K. Mohammadi, K. Ellingwood, K. Powell, Novel hybrid solar tower-gas turbine combined power cycles using supercritical carbon dioxide bottoming cycles, Applied Thermal Engineering, 178 (2020) 115588.
[12] A.M. Pantaleo, S.M. Camporeale, A. Miliozzi, V. Russo, N. Shah, C.N. Markides, Novel hybrid CSP-biomass CHP for flexible generation: Thermo-economic analysis and profitability assessment, Applied energy, 204 (2017) 994-1006.
[13] A.M. Pantaleo, S.M. Camporeale, A. Sorrentino, A. Miliozzi, N. Shah, C.N. Markides, Hybrid solar-biomass combined Brayton/organic Rankine-cycle plants integrated with thermal storage: Techno-economic feasibility in selected Mediterranean areas, Renewable Energy, 147 (2020) 2913-2931.
[14] K. Ellingwood, S.M. Safdarnejad, K. Rashid, K. Powell, Leveraging energy storage in a solar-tower and combined cycle hybrid power plant, Energies, 12(1) (2019) 40.
[15] M.K. Manesh, M. Ameryan, Optimal design of a solar-hybrid cogeneration cycle using Cuckoo Search algorithm, Applied Thermal Engineering, 102 (2016) 1300-1313.
[16] G. Wang, Y. Cao, S. Wang, Z. Chen, P. Hu, Design and preliminary performance analysis of a novel solar-gas combined cycle system, Applied Thermal Engineering, (2020) 115184.
[17] K. Wang, M.-J. Li, Z.-D. Zhanga, C.-H. Min, P. Li, Evaluation of alternative eutectic salt as heat transfer fluid for solar power tower coupling a supercritical CO2 Brayton cycle from the viewpoint of system-level analysis, Journal of Cleaner Production, (2020) 123472.
[18] J. Yang, Z. Yang, Y. Duan, Off-design performance of a supercritical CO2 Brayton cycle integrated with a solar power tower system, Energy, (2020) 117676.
[19] K. Mohammadi, M. Saghafifar, K. Ellingwood, K. Powell, Hybrid concentrated solar power (CSP)-desalination systems: A review, Desalination, 468 (2019) 114083.
[20] S. Anvari, S. Khalilarya, V. Zare, Power generation enhancement in a biomass-based combined cycle using solar energy: Thermodynamic and environmental analysis, Applied Thermal Engineering, 153 (2019) 128-141.
[21] S. Anvari, S. Khalilarya, V. Zare, Exergoeconomic and environmental analysis of a novel configuration of solar-biomass hybrid power generation system, Energy, 165 (2018) 776-789.
[22] H. Rostamzadeh, H. Ghiasirad, M. Amidpour, Y. Amidpour, Performance enhancement of a conventional multi-effect desalination (MED) system by heat pump cycles, Desalination, 477 (2020) 114261.
[23] E. Rafat, M. Babaelahi, Recovering waste heat of a solar hybrid power plant using a Kalina cycle and desalination unit: A sustainability (emergo-economic and emergo-environmenal) approach, Energy Conversion and Management, 224 (2020) 113394.
[24] P. Palenzuela, B. Ortega-Delgado, D.-C. Alarcón-Padilla, Comparative assessment of the annual electricity and water production by concentrating solar power and desalination plants: A case study, Applied Thermal Engineering, 177 (2020) 115485.
[25] A. Kouta, F.A. Al-Sulaiman, M. Atif, Energy analysis of a solar driven cogeneration system using supercritical CO2 power cycle and MEE-TVC desalination system, Energy, 119 (2017) 996-1009.
[26] P. Satyamurthy, N. Venkatramani, A. Quraishi, A. Mushtaq, Basic design of a prototype liquid metal magnetohydrodynamic power generator for solar and waste heat, Energy conversion and management, 40(9) (1999) 913-935.
[27] M. Kiyasatfar, N. Pourmahmoud, M.M. Golzan, I. Mirzaee, Thermal behavior and entropy generation rate analysis of a viscous flow in MHD micropumps, Journal of mechanical science and technology, 26(6) (2012) 1949-1955.
[28] H. Branover, Liquid-Metal MHD Research and Development in Israel, Progress in Astronautics and Aeronautics, 148 (1993) 209-209.
[29] Mini Power Generation Capsules using Solar energy LMMHD technology., BARC Project Report., (1997).
[30] S. Mirmasoumi, S. Ebrahimi, R.K. Saray, Enhancement of biogas production from sewage sludge in a wastewater treatment plant: Evaluation of pretreatment techniques and co-digestion under mesophilic and thermophilic conditions, Energy, 157 (2018) 707-717.
[31] M. Aghbashlo, M. Tabatabaei, S. Soltanian, H. Ghanavati, A. Dadak, Comprehensive exergoeconomic analysis of a municipal solid waste digestion plant equipped with a biogas genset, Waste management, 87 (2019) 485-498.
[32] H. Ghiasirad, N. Asgari, R.K. Saray, S. Mirmasoumi, Thermoeconomic assessment of a geothermal based combined cooling, heating, and power system, integrated with a humidification-dehumidification desalination unit and an absorption heat transformer, Energy Conversion and Management, 235 (2021) 113969.
[33] S. Klein, S. Alvarda, Engineering equation solver (EES), in, F-chart software, WI, 2007.
[34] A. Bejan, G. Tsatsaronis, M.J. Moran, Thermal design and optimization, John Wiley & Sons, 1995.
[35] T.J. Kotas, The exergy method of thermal plant analysis, Elsevier, 2013.
[36] H. Ghiasirad, R.K. Saray, B. Abdi, K. Bahlouli, Energy, exergy, and exergo-economic analyses of Urmia sugar factory: a case study of Iran.
[37] M. Ehyaei, S. Baloochzadeh, A. Ahmadi, S. Abanades, Energy, exergy, economic, exergoenvironmental, and environmental analyses of a multigeneration system to produce electricity, cooling, potable water, hydrogen and sodium-hypochlorite, Desalination, 501 (2021) 114902.
[38] M.A. Jamil, M.W. Shahzad, S.M. Zubair, A comprehensive framework for thermoeconomic analysis of desalination systems, Energy Conversion and Management, 222 (2020) 113188.
[39] S.M. Milani, R.K. Saray, M. Najafi, Exergo-economic analysis of different power-cycle configurations driven by heat recovery of a gas engine, Energy Conversion and Management, 186 (2019) 103-119.
[40] D.U. Lawal, S.M. Zubair, M.A. Antar, Exergo-economic analysis of humidification-dehumidification (HDH) desalination systems driven by heat pump (HP), Desalination, 443 (2018) 11-25.
[41] F.H. Leich, Magnetohydrodynamics (MHD) as a future power generation method in the state of Montana, (1971).
[42] M. Feili, H. Ghaebi, T. Parikhani, H. Rostamzadeh, Exergoeconomic analysis and optimization of a new combined power and freshwater system driven by waste heat of a marine diesel engine, Thermal Science and Engineering Progress, 18 (2020) 100513.
[43] C. Xu, Z. Wang, X. Li, F. Sun, Energy and exergy analysis of solar power tower plants, Applied Thermal Engineering, 31(17-18) (2011) 3904-3913.