[1] A.J. Toth, Modelling and Optimisation of Multi-Stage Flash Distillation and Reverse Osmosis for Desalination of Saline Process Wastewater Sources, Membranes, 10 )10) (2020) 265.
[2] C. Xie, L. Zhang, Y. Liu, Q. Lv, G. Ruan, S.S. Hosseini, A direct contact type ice generator for seawater freezing desalination using LNG cold energy, Desalination, 435 (2018) 293-300.
[3] T. Mezher, H. Fath, Z. Abbas, A. Khalid, Techno-economic assessment and environmental impacts of desalination technologies, Desalination, 266 (2020) 263-273.
[4] S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Progress in Materials Science, 58(8) (2013) 1388-1442.
[5] M. Anderson, A. L. Cudero, J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?, Electrochimica Acta, 55 (2010) 3845-3856.
[6] J.C. Farmer, D.V. Fix, G.V. Mack, R.W. Pekala, J.F. Poco, Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes, Journal of Applied Electrochemistry, 26(10) (1996) 1007-1018.
[7] A.M. Johnson, W. VENOLIA, The electrosorb process for desalting water, (1970).
[8] A.M. Johnson, J. Newman, Desalting by Means of Porous Carbon Electrodes, Journal of The Electrochemical Society, 118(3) (1971) 510.
[9] M.E. Suss, T.F. Baumann, W.L. Bourcier, C.M. Spadaccini, K.A. Rose, J.G. Santiago, M. Stadermann, Capacitive desalination with flow-through electrodes, Energy & Environmental Science, 5(11) (2012) 9511-9519.
[10] A. Hemmatifar, M. Stadermann, J.G. Santiago, Two-Dimensional Porous Electrode Model for Capacitive Deionization, The Journal of Physical Chemistry C, 119 (44) (2015) 24694-24681.
[11] E.N. Guyes, A.N. Shocron, A. Simanovski, P.M. Biesheuvel, M. Suss, A one-dimensional model for water desalination by flow-through electrode capacitive deionization, (2017).
[12] P.M. Biesheuvel, H.V.M. Hamelers, M.E. Suss, Theory of Water Desalination by Porous Electrodes with Immobile Chemical Charge, Colloids and Interface Science Communications, 9 (2015) 1-5.
[13] A.N. Shocron, M.E. Suss, The effect of surface transport on water desalination by porous electrodes undergoing capacitive charging, Journal of physics. Condensed matter: an Institute of Physics journal, 29(8) (2017) 084003.
[14] P.M. Biesheuvel, M.Z. Bazant, Nonlinear dynamics of capacitive charging and desalination by porous electrodes, Physical Review E, 81(3) (2010) 031502.
[15] K. Laxman, A. Husain, A. Nasser, M. Al Abri, J. Dutta, Tailoring the pressure drop and fluid distribution of a capacitive deionization device, Desalination, 449 (2019) 111-117.
[16] P.M. Biesheuvel, B. van Limpt, A. van der Wal, Dynamic Adsorption/Desorption Process Model for Capacitive Deionization, The Journal of Physical Chemistry C, 113(14) (2009) 5636-5640.
[17] Y.A.C. Jande, W.S. Kim, Predicting the lowest effluent concentration in capacitive deionization, Separation and Purification Technology, 115 (2013) 224-230.
[18] Y. Jande, W.-S. Kim, Desalination using capacitive deionization at constant current, Desalination, 329 (2013) 29-34.
[19] Y. Qu, P.G. Campbell, A. Hemmatifar, J.M. Knipe, C.K. Loeb, J.J. Reidy, M.A. Hubert, M. Stadermann, J.G. Santiago, Charging and Transport Dynamics of a Flow-Through Electrode Capacitive Deionization System, The Journal of Physical Chemistry B, 122(1) (2018) 240-249.
[20] L. Chen, X. Dong, F. Wang, Y. Wang, Y. Xia, Base–acid hybrid water electrolysis, Chemical Communications, 52(15) (2016) 3147-3150.