[1] O. Johnell, J. Kanis, An estimate of the worldwide prevalence and disability associated with osteoporotic fractures, Osteoporosis international, 17(12) (2006) 1726-1733.
[2] B. Gullberg, O. Johnell, J. Kanis, World-wide projections for hip fracture, Osteoporosis international, 7(5) (1997) 407-413.
[3] J. Lotz, E. Cheal, W.C. Hayes, Fracture prediction for the proximal femur using finite element models: part I—linear analysis, Journal of biomechanical engineering, 113(4) (1991) 353-360.
[4] J. Lotz, E. Cheal, W.C. Hayes, Fracture prediction for the proximal femur using finite element models: part II—nonlinear analysis, (1991).
[5] J.H. Keyak, Improved prediction of proximal femoral fracture load using nonlinear finite element models, Medical engineering & physics, 23(3) (2001) 165-173.
[6] M. Bessho, I. Ohnishi, J. Matsuyama, T. Matsumoto, K. Imai, K. Nakamura, Prediction of strength and strain of the proximal femur by a CT-based finite element method, Journal of biomechanics, 40(8) (2007) 1745-1753.
[7] J.E. Koivumäki, J. Thevenot, P. Pulkkinen, V. Kuhn, T.M. Link, F. Eckstein, T. Jämsä, Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur, Bone, 50(4) (2012) 824-829.
[8] J.H. Keyak, H.B. Skinner, J.A. Fleming, Effect of force direction on femoral fracture load for two types of loading conditions, Journal of Orthopaedic Research, 19(4) (2001) 539-544.
[9] K.K. Nishiyama, S. Gilchrist, P. Guy, P. Cripton, S.K. Boyd, Proximal femur bone strength estimated by a computationally fast finite element analysis in a sideways fall configuration, Journal of biomechanics, 46(7) (2013) 1231-1236.
[10] M. Mirzaei, M. Keshavarzian, V. Naeini, Analysis of strength and failure pattern of human proximal femur using quantitative computed tomography (QCT)-based finite element method, Bone, 64 (2014) 108-114.
[11] M. Mirzaei, M. Keshavarzian, F. Alavi, P. Amiri, S. Samiezadeh, QCT-based failure analysis of proximal femurs under various loading orientations, Medical & Biological Engineering & Computing, 53(6) (2015) 477-486.
[12] E.M. Feerick, J.P. McGarry, Cortical bone failure mechanisms during screw pullout, Journal of biomechanics, 45(9) (2012) 1666-1672.
[13] R. Hambli, A. Bettamer, S. Allaoui, Finite element prediction of proximal femur fracture pattern based on orthotropic behaviour law coupled to quasi-brittle damage, Medical engineering & physics, 34(2) (2012) 202-210.
[14] M. Mirzaei, F. Alavi, F. Allaveisi, V. Naeini, P. Amiri, Linear and nonlinear analyses of femoral fractures: Computational/experimental study, Journal of biomechanics, 79 (2018) 155-163.
[15] A.A. Ali, L. Cristofolini, E. Schileo, H. Hu, F. Taddei, R.H. Kim, P.J. Rullkoetter, P.J. Laz, Specimen-specific modeling of hip fracture pattern and repair, Journal of Biomechanics, 47(2) (2014) 536-543.
[16] A. Idkaidek, I. Jasiuk, Cortical bone fracture analysis using XFEM–case study, International journal for numerical methods in biomedical engineering, 33(4) (2017) e2809.
[17] M. Marco, E. Giner, R. Larraínzar-Garijo, J.R. Caeiro, M.H. Miguélez, Modelling of femur fracture using finite element procedures, Engineering Fracture Mechanics, 196 (2018) 157-167.
[18] K. Piekarski, Analysis of bone as a composite material, International journal of engineering science, 11(6) (1973) 557-565.
[19] D.T. Reilly, A.H. Burstein, The elastic and ultimate properties of compact bone tissue, Journal of biomechanics, 8(6) (1975) 393-405.
[20] J.D. Currey, The structure and mechanics of bone, Journal of Materials Science, 47(1) (2012) 41-54.
[21] J.H. Keyak, S.A. Rossi, Prediction of femoral fracture load using finite element models: an examination of stress-and strain-based failure theories, Journal of biomechanics, 33(2) (2000) 209-214.
[22] C. Les, J. Keyak, S.M. Stover, K. Taylor, A. Kaneps, Estimation of material properties in the equine metacarpus with use of quantitative computed tomography, Journal of Orthopaedic Research, 12(6) (1994) 822-833.
[23] J.H. Keyak, Y. Falkinstein, Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load, Medical engineering & physics, 25(9) (2003) 781-787.
[24] Z. Hashin, Failure criteria for unidirectional fiber composites, Journal of applied mechanics, 47(2) (1980) 329-334.
[25] A. Matzenmiller, J. Lubliner, R. Taylor, A constitutive model for anisotropic damage in fiber-composites, Mechanics of materials, 20(2) (1995) 125-152.
[26] I. Lapczyk, J.A. Hurtado, Progressive damage modeling in fiber-reinforced materials, Composites Part A: Applied Science and Manufacturing, 38(11) (2007) 2333-2341.
[27] R. Cook, P. Zioupos, The fracture toughness of cancellous bone, Journal of biomechanics, 42(13) (2009) 2054-2060.
[28] E.A. Zimmermann, M.E. Launey, H.D. Barth, R.O. Ritchie, Mixed-mode fracture of human cortical bone, Biomaterials, 30(29) (2009) 5877-5884.
[29] E.M. Feerick, X.C. Liu, P. McGarry, Anisotropic mode-dependent damage of cortical bone using the extended finite element method (XFEM), Journal of the mechanical behavior of biomedical materials, 20 (2013) 77-89.