اثر پدیده شبه جوشش و نسبت شار جرمی بر دینامیک یک شعله برشی محوری در شرایط گذر-بحرانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده هوافضا، دانشگاه صنعتی شریف پژوهشگاه فضایی ایران، پژوهشکده سامانه های حمل و نقل فضایی

2 هیت علمی پژوهشگاه فضایی ایران

3 دانشگاه شریف*هوافضا

چکیده

در مقاله حاضر اثرات مربوط به برهمکنش جت چگالی بالا اکسیژن مایع با جریان سرعت بالای هیدروژن در حضور پدیده شبه-جوشش مورد بررسی قرار گرفته است. در اثر پدیده شبه-جوشش یک انبساط ناگهانی در شعله ایجاد می‌شود که منجر به تشکیل جریان‌های چرخشی می‌شود. مدل‌های آشفته مختلف مورد بررسی قرار گرفته و نشان داده شده است که انتخاب یک مدل آشفتگی مناسب در جریان‌های واکنشی گذر-بحرانی بسیار حیاتی‌تر از شعله‌های زیر بحرانی و فرا-بحرانی می‌باشد. همچنین بر خلاف انتظار، هسته چگال اکسیژن مایع در جریان غیر واکنشی سریعتر از جریان واکنشی ناپدید می‌شود که این پدیده ناشی از ضعیف شدن قدرت اختلاط در جریان واکنشی به دلیل انبساط شدید ناشی از پدیده شبه جوشش می‌باشد. اثرات نسبت شار جرمی نیز مورد بررسی قرار گرفت و مشاهده شد که با افزایش نسبت شار جرمی از 5 به محدوده 24، یک جریان چرخشی قوی در پیشانی شعله شکل می‌گیرد و شعله به شکل حبابی در می‌آید که مشابه شعله متان-اکسیژن مایع می‌باشد. افزایش نسبت شار جرمی منجر به افزایش قدرت لایه برشی شده و در نتیجه با افزایش اختلاط، پدیده شبه جوشش با نرخ و سرعت حجم بیشتری رخ می‌دهد. در نهایت افزایش حجم تبدیل اکسیژن از شرایط مایع-مانند به گاز-مانند منجر به تشکیل یک جریان گردابی قدرتمند در پیشانی شعله می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Influence of Pseudo-Boiling Phenomenon and the Mass Flux Ratio on the Dynamics of Transcritical Shear Flame

نویسندگان [English]

  • hamed zeinivand 1
  • Hadi Rezaei 2
  • Mohammad Farshchi 3
1 Aerospace Engineering Faculty, Sharif University of Technology
2 Iranian Space Research Center, Tehran, Iran
3 Aerospace Department, Sharif university of Technology
چکیده [English]

In the present paper, the effects of the interaction of a high-density liquid oxygen jet with high-velocity hydrogen in the presence of a pseudo-boiling phenomenon are investigated. The pseudo-boiling phenomenon causes a sudden expansion in the flame, which leads to the formation of a recirculation zone. Different turbulence models have been investigated and it has been shown that the selection of a suitable turbulence model for the trans-critical reacting flow is much more important than subcritical and supercritical flames. Also, contrary to expectations, the dense core of liquid oxygen disappears faster in the non-reacting case than the reacting flow, which is due to the displacement of the mixing layer in the reacting flow due to the intense expansion (because of the pseudo-boiling phenomenon). The effects of mass flux ratio were also investigated and it was observed that by increasing the mass flux ratio from 5 to 24, a strong recirculation is formed at the flame front and the flame becomes like a bubble, similar to LOX-GCH4 flame. Increasing the mass flux ratio leads to an increase in the strength of the shear layer that causes the pseudo-boiling phenomenon to occur at a higher rate. Finally, increasing conversion of the liquid-like oxygen to gas-like conditions leads to the formation of a strong vortex in the flame front.

کلیدواژه‌ها [English]

  • Cryogenic propellants
  • Transcritical injection
  • Pseudo-boiling phenomenon
  • Supercritical combustion
[1]J. Oefelein, R. Dahms, G. Lacaze, J. Manin, L. Pickett, Effects of pressure on fundamental physics of fuel injection in diesel engines, Proc. of the 12th Int. Conf. on Liquid Atomization and Spray Systems (ICLASS), Heidelberg, Germany, 2012.
[2]M. Oschwald, J.J. Smith, R. Branam, J. Hussong, A. Schik, B. Chehroudi, D. Talley, Injection of fluids into supercritical environments, Combustion Science and Technology, 178 (2006) 49-100.
[3]J. Bellan, Supercritical (and subcritical) fluid behavior and modeling, drops, streams, shear and mixing layers and sprays, Progress in Energy and Combustion Science, 26(2000) 329-366.
[4]J. A. Newman, T.A. Brzustowski, Behavior of a liquid jet near the thermodynamic critical region, AIAA J., 9(1971) 1595-1602.
[5] K. Gong, Y. Cao, Y. Feng, S. Liu, J. Qin, Influence of secondary reactions on heat transfer process during pyrolysis of hydrocarbon fuel under supercritical conditions, Applied Thermal Engineering. 159(2019) 113912.
[6]D. T. Banuti, Crossing the Widom-line-supercritical pseudo-Boiling, J. Super Fluids, 98(2015) 12-16.
[7]D.T. Banuti, K. Hannemann, Effect of injector wall heat flux on cryogenic injection, 46th AIAA/ASME/SAE/ASEE Joint Prop Conf. Exhibition, AIAA paper 2010-7139, July 2010.
[8]S. Kawai, Direct numerical simulation of transcritical turbulent boundary layers at supercritical pressures with strong Real Fluid Effects, 54th AIAA Aero. Sci. Meeting San Diego, California, AIAA paper 2016-1934, 2016.
[9]B. Chehroudi, T.D. Talley, E. Coy, Visual characteristics and initial growth rates of round cryogenic jets at subcritical and supercritical pressures,” Physics of Fluids. 14(2) (2002) 580-861.
[10]M.C. Decker, A. Schik, U.E. Meier, R.W. Stricker, Quantitative Raman imaging investigations of mixing phenomena in high pressure cryogenic jets, Applied Optics. 37(24) (1998) 5620-5627.
[11]A. Roy, C. Segal, Experimental study of fluid jet mixing at supercritical conditions, Journal of Propulsion and Power. 26(6) (2010) 1205-1211.
[12]M. Oschwald, A. Schik, Supercritical nitrogen free jet investigated by spontaneous Raman scattering, Experiments in Fluids. 27(6) (1999) 497-506.
[13]W. Mayer, J. Telaar, R. Branam, G. Schneider, J. Hussong, Raman measurements of cryogenic injection at supercritical pressure, Heat and Mass Transfer. 39 (8) (2003) 709-719.
[14]R, Branam, W. Mayer, Characterization of cryogenic injection at supercritical pressure, Journal of Propulsion and Power. 19 (3) 2003 342-355.
[15]H. Tani, S. Teramoto, N. Yamanashi, K. Okamoto. A numerical study on a temporal mixing layer under transcritical conditions, Computers and Fluids, 85(2013) 93-104.
[16] P. E. Lapenna, Characterization of pseudo-boiling in a transcritical nitrogen jet, Physics of Fluids, 30(2018) 077106.
[17]P. E. Lapenna, F. Creta, Direct numerical simulation of transcritical jets at moderate Reynolds number, AIAA Journal, 57 (2019) 2254-2263.
[18]F. Reis, P. Obando, I. Shevchuck, J, Janicka, A. Sadiki, Numerical analysis of turbulent flow dynamics and heat transport in a round jet at supercritical conditions, International Journal of Heat and Fluid Flow, 66(2017) 172-184.
[19]H, Muller, C.A. Niedermeier, J. Mathies, M. Pfitzner, S. Hickel, Large-eddy simulation of nitrogen injection at trans- and supercritical conditions, Physics of Fluids, 28(2016) 015102.
[20]C. Largarza-Cortes, J. R Cruz, M. S. Vazquez, W. V. Rodriguez, Large-eddy simulation of transcritical and supercritical jets immersed in a quiescent enviroment, Physics of Fluids, 31(2019) 025104.
[21]H. Muller, M. Pfitzner, J. Matheis, S. Hickel, Large-eddy simulation of coaxial LN2/GH2 injection at trans- and supercritical conditions, Journal of Propulsion and Power, 32(2016) 46-56.
[22]J. Zhang, X. Zhang, T. Wang, X. Hou, A numerical study on jet characteristics under different supercritical conditions for engine applications, Applied Energy, 252(2019) 113428.
[23]W. Wei, H. Liu, M. Xie, M. Jia, M. Yue, Large eddy simulation and proper orthogonal decomposition analysis of fuel injection under trans/supercritical conditions, Computers and Fluids, 30(2019) 150-162.
[24]T. S. Park, LES and RANS simulation of cryogenic liquid nitrogen jets, Journal of Supercritical Fluids, 72(2012) 232-247.
[25]X. Petit, G. Ribert, G. Lartigue, P. Domingo, Large-Eddy simulation of supercritical fluid injection, Journal of Supercritical Fluids, 84(2013) 61-73.
[26]T. Kim, Y. Kim, S.K. Kim, Numerical study of cryogenic liquid nitrogen jets at supercritical pressures, Journal of Supercritical Fluids, 84(2013) 61-73.
[27]E. .L.S.F Antunes, A.R.R. Silva, J. M. M. Barata, RANS modeling of transcritical and supercritical nitrogen, 53rd AIAA aerospace science meeting, 2015, Kissimmee, Florid.
[28]M. Juniper, A. Tripathi, P.  Scoufiare, J.C. Rolon, S. Candel, Structure of cryogenic flames at elevated pressures, Proceeding of Combustion Insttitue, 28(1) (2000) 1103-1109.
[29]S. Candel, M. Juniper, G. Singla, P. Scouflaire, C. Rolon, Structure and dynamics of cryogenic flames at supercritical pressure, Combustion Science and Technology, 178(1) (2006) 161-192.
[30]W. Mayerm, H. Tamura, Propellant injection in a liquid oxygen/gaseous hydrogen rocket engine, Journal of Propulsion and Power. 12 (6) (1996) 1137-1147.
[31]S. Zurbach, J. Thomas, M. Sion, T. Kachler, L. Vingert, M. Habiballah, Recent advances on LOX/methane combustion for liquid rocket engine injector, 38th AIAA/ASME/SAE/ASEE Joint Propul. Conf. Exh. AIAA paper 2002-4321, July 2002.
[32]S. Candel, M. Juniper, G. Singla, P. Scouflaire, C. Rolon, Structure and dynamics of cryogenic flames at supercritical pressure, Combustion and Science Technology, 178 (2006) 161-192.
[33]G. Singla, P. Scouflaire, C. Rolon, S. Candle, Transcritical oxygen/transcritical or supercritical methane combustion, Proceeding of Combustion Insttitue. 30 (2) (2002) 2921-2928.
[34]T. Schmitt, Y. Mery, M. Boileau, S. Candel, Large-eddy simulation of oxygen/methane flames under transcritical conditions, Proceeding of Combustion Insttitue. 33 (2011) 1383-1390.
[35]J. Zips, H. Muller, M. Pfitzner, Efficient thermo-chemisty tabulation for non-premixed combustion at high-pressure conditions, Flow, Turbulence and Combustion, 101(2018) 821-850.
[36]L. Cutrone, P. de Palma, G. Pascazio, M. Napolitano, A RANS flamelet/progress-variable method for computing reacting flows of real-gas mixtures, Computer and Fluids, 39(3) (2010) 485-498.
[37]M. M. Poschner, M. Pfitzner, CFD-Simulation of injection and combustion of LOX and H2 at supercritical pressure, 48nd Aerospace Sci. Meeting, AIAA paper 2010-1144, Jan 2010.
[38]S. Pohl, M. Jarczyk, M. Pfitzner, B. Rogg, Real gas CFD simulation of hydrogen/ oxygen supercritical combustion, Progress in Propulsion Physcis, 4(2013) 583-614.
[39]T. Kim, Y. Kim, S. K. Kim, Real-fluid flamelet modeling for gaseous hydrogen/cryogenic liquid oxygen jet flames at supercritical pressure, Journal of Supercritical Fluids, 58(2) (2011) 254-262.
[40]T. Kim, Y.  Kim, S. K. Kim, Effects of pressure and inlet temperature on coaxial gaseous methane/liquid oxygen turbulet jet flame under transcritical conditions, Journal of Supercritical Fluids, 81(2013) 164-174.
[41]M. J. Seidl, M. Aigner, R. Keller, P. Gerlinger, CFD simulation of turbulent nonreacting and reacting flows for rocket engine applications, Journal of Supercritical Fluids, 121(2017) 63-77.
[42]Poinsot, T., and Veynante, D., Theoretical and numerical combustion, R.T. Edwards, Philadelphia, PA, 2001.
[43] W. P. Jones, B. E. Launder, The prediction of laminarization with a two-equation model of turbulence, International Journal of Heat and Mass Transfer, 15(2) (1972) 301-314.
[44]T. H. Shih, W. W. Liou, A. Shabbir, Z. Yang, J. Zhu, A new k -ε eddy-viscosity model for high reynolds number turbulent flows - model development and validation, Computer and Fluids. 24 (3) (1995) 227-238.
[45]F. Meter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32 (8) (1994) 1598-1605.
[46]B. F. Magnussen, On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow, 19th AIAA Aerospace Meeting, St. Louis, MO, AIAA Paper 1981-0042, (1981).
[47]J. Li, Z.  Zhao, A. Kazakov, F. L. Dryer, An updated comprehension chemical kinetics, International Journal of Chemical Kinetics, 36(10) (2004) 566-575.
[48]G. Soave, Equation constants from a modified redlich-kwong equation of state, Chemical Engineering Science, 27(6) (1972) 1197-1203.
[49]NIST Chemistry WebBook, NIST Standard Database No. 69, June 2005 Release, http://webbook.nist.gov/chemistry.
[50]T. H. Chung, M. Ajlan, L.L. Lee, K. E. Starling, Generalized multiparameter correlation for nonpolar and polar fluid transport properties, Indust. Eng. Chem. Res.  27(4) (1988) 671-679.
[51]S. Chapman, T. G. Cowling, The Mathematical Theory of Nonuniform Gaes, 2nd ed, Cambrdige University Press, London. (1952).
[52]S. Takahashi, Preparation of a generalized chart for the diffuison coefficients of gases at high pressure, J. Chem Eng Japan. 7 (6) (1974) 417-420.
[53]P. Vandoormaal, G. Raithby, Enhancements of the SIMPLE method for predicting incompressile fluid flows, Num. Heat. Trans. 7 (2) (1984) 147-163.