[1] J.A. Potkay, The promise of microfluidic artificial lungs, Lab on a Chip, 14(21) (2014) 4122-4138.
[2] D.J. Skoog, J.R. Pohlmann, D.S. Demos, C.N. Scipione, A. Iyengar, R.E. Schewe, A.B. Suhaib, K.L. Koch, K.E. Cook, Fourteen day in vivo testing of a compliant thoracic artificial lung (cTAL), ASAIO journal (American Society for Artificial Internal Organs: 1992), 63(5) (2017) 644.
[3] V. Charoenkul, F. Giron, E. Peirce 2nd, Respiratory support with a paracorporeal membrane oxygenator, Journal of Surgical Research, 14(5) (1973) 393-399.
[4] J.B. Zwischenberger, C.M. Anderson, K.E. Cook, S.D. Lick, L.F. Mockros, R.H. Bartlett, Development of an implantable artificial lung: challenges and progress, ASAIO journal, 47(4) (2001) 316-320.
[5] D. Camboni, A. Philipp, M. Arlt, M. Pfeiffer, M. Hilker, C. Schmid, First experience with a paracorporeal artificial lung in humans, Asaio Journal, 55(3) (2009) 304-306.
[6] O.L. Colón, J. Miguel, L.A. Zayas, Biofluid mechanics of an artificial lung, in: Puerto Rico Mayagüez: Congress on biofluid dynamics of human body systems, 2004, pp. E1-34.
[7] F. Boschetti, C.E. Perlman, K.E. Cook, L.F. Mockros, Hemodynamic effects of attachment modes and device design of a thoracic artificial lung, Asaio Journal, 46(1) (2000) 42-48.
[8] R.E. Schewe, Thoracic artificial lung design, University of Michigan, 2012.
[9] G. Wnek, G. Bowlin, Biofunctional Polymers/Jennifer L. West, in: Encyclopedia of Biomaterials and Biomedical Engineering, CRC Press, 2008, pp. 250-256.
[10] Y.-c. Lin, K.M. Khanafer, R.H. Bartlett, R.B. Hirschl, J.L. Bull, An investigation of pulsatile flow past two cylinders as a model of blood flow in an artificial lung, International journal of heat and mass transfer, 54(15-16) (2011) 3191-3200.
[11] Y.-c. Lin, D.O. Brant, R.H. Bartlett, R.B. Hirschl, J.L. Bull, Pulsatile flow past a cylinder: An experimental model of flow in an artificial lung, Asaio Journal, 52(6) (2006) 614-623.
[12] K. Chan, H. Fujioka, R. Bartlett, R. Hirschl, J. Grotberg, Pulsatile flow and mass transport over an array of cylinders: gas transfer in a cardiac-driven artificial lung, Journal of Biomechanical Engineering, 128(1) (2006) 85-96.
[13] J.R. Zierenberg, H. Fujioka, K.E. Cook, J.B. Grotberg, Pulsatile flow and oxygen transport past cylindrical fiber arrays for an artificial lung: Computational and experimental studies, Journal of biomechanical engineering, 130(3) (2008).
[14] J.R. Zierenberg, H. Fujioka, R.B. Hirschl, R.H. Bartlett, J.B. Grotberg, Pulsatile Blood Flow and Oxygen Transport Past a Circular Cylinder, Journal of Biomechanical Engineering, 129(2) (2007) 202-215.
[15] F. Boschetti, K.E. Cook, C.E. Perlman, L.F. Mockros, Blood flow pulsatility effects upon oxygen transfer in artificial lungs, ASAIO journal, 49(6) (2003) 678-686.
[16] K.E. Cook, C.E. Perlman, R. Seipelt, C.L. Backer, C. Mavroudis, L.F. Mockros, Hemodynamic and gas transfer properties of a compliant thoracic artificial lung, ASAIO journal, 51(4) (2005) 404-411.
[17] A. Qamar, R. Seda, J.L. Bull, Pulsatile flow past an oscillating cylinder, Physics of fluids, 23(4) (2011) 041903.
[18] N. Salehi-Nik, G. Amoabediny, S.P. Banikarimi, B. Pouran, Z. Malaie-Balasi, B. Zandieh-Doulabi, J. Klein-Nulend, Nanoliposomal growth hormone and sodium nitrite release from silicone fibers reduces thrombus formation under flow, Annals of biomedical engineering, 44(8) (2016) 2417-2430.
[19] M. Pflaum, M. Kühn-Kauffeldt, S. Schmeckebier, D. Dipresa, K. Chauhan, B. Wiegmann, R.J. Haug, J. Schein, A. Haverich, S. Korossis, Endothelialization and characterization of titanium dioxide-coated gas-exchange membranes for application in the bioartificial lung, Acta biomaterialia, 50 (2017) 510-521.
[20] G.-B. Kim, S.-J. Kim, C.-U. Hong, T.-K. Kwon, N.-G. Kim, Enhancement of oxygen transfer in hollow fiber membrane by the vibration method, Korean Journal of Chemical Engineering, 22(4) (2005) 521-527.
[21] R.A. Orizondo, G. Gino, G. Sultzbach, S.P. Madhani, B.J. Frankowski, W.J. Federspiel, Effects of hollow fiber membrane oscillation on an artificial lung, Annals of biomedical engineering, 46(5) (2018) 762-771.
[22] B.V. Zahra Mollahoseini, Numerical Investigation of Oxygen Transfer and Blood Flow over Arrays of 3D Fibers of Artificial Lung, IRANIAN JOURNAL OF BIOMEDICAL ENGINEERING, 12(2) (2018) 125-136.
[23] K.E. Cook, A.J. Makarewicz, C.L. Backer, L.F. Mockros, H. Przybylo, S.E. Crawford, J.M. Hernandez, R.J. Leonard, C. Mavroudis, Testing of an intrathoracic artificial lung in a pig model, ASAIO Journal (American Society for Artificial Internal Organs: 1992), 42(5) (1996) M604-609.
[24] U. Manual, ANSYS FLUENT 12.0, Theory Guide, (2009).
[25] L. Leverett, J. Hellums, C. Alfrey, E. Lynch, Red blood cell damage by shear stress, Biophysical journal, 12(3) (1972) 257-273.