[1] M.A. Hemphill, S. Dauth, C.J. Yu, B.E. Dabiri, K.K. Parker, Traumatic brain injury and the neuronal microenvironment: a potential role for neuropathological mechanotransduction, Neuron, 85(6) (2015) 1177-1192.
[2] A. Goriely, S. Budday, E. Kuhl, Neuromechanics: from neurons to brain, Advances in Applied Mechanics, 48 (2015) 79-139.
[3] D.C. Van Essen, A tension-based theory of morphogenesis and compact wiring in the central nervous system, Nature, 385(6614) (1997) 313-318.
[4] A. Holbourn, Mechanics of head injuries, The Lancet, 242(6267) (1943) 438-441.
[5] A. Jérusalem, M. Dao, Continuum modeling of a neuronal cell under blast loading, Acta biomaterialia, 8(9) (2012) 3360-3371.
[6] A. Montanino, S. Kleiven, Utilizing a structural mechanics approach to assess the primary effects of injury loads onto the axon and its components, Frontiers in neurology, 9 (2018) 643.
[7] C. Conde, A. Cáceres, Microtubule assembly, organization and dynamics in axons and dendrites, Nature Reviews Neuroscience, 10(5) (2009) 319-332.
[8] E. Bar-Kochba, M.T. Scimone, J.B. Estrada, C. Franck, Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury, Scientific Reports, 6(1) (2016) 1-11.
[9] F. Zhu, D.L. Gatti, K.H. Yang, Nodal versus total axonal strain and the role of cholesterol in traumatic brain injury, Journal of neurotrauma, 33(9) (2016) 859-870.
[10] S.P. Mutalik, J. Joseph, P.A. Pullarkat, A. Ghose, Cytoskeletal mechanisms of axonal contractility, Biophysical journal, 115(4) (2018) 713-724.
[11] J.-P. Dollé, B. Morrison III, R.S. Schloss, M.L. Yarmush, An organotypic uniaxial strain model using microfluidics, Lab on a Chip, 13(3) (2013) 432-442.
[12] S.D.a.B.V. Ghasimi, effect of strain on axonal injuries in microfluidic cell culture platform, in: The 27th Annual International Conference of Iranian Society of Mechanical Engineers-ISME, Tehran, Iran, 2019.
[13] E. Stein, R. De Borst, T.J. Hughes, Encyclopedia of computational mechanics, (2004).
[14] A. Comsol, Structural mechanics module user’s guide, COMSOL Multiphysics (TM) v, 5 (2012).
[15] R.D. Cook, Concepts and applications of finite element analysis, John wiley & sons, 2007.
[16] N. Abolfathi, A. Naik, M. Sotudeh, G. Karami, M. Ziejewski, Diffuse axonal injury and degradation in mechanical characteristics of brain white matter, in: Summer Bioengineering Conference, American Society of Mechanical Engineers, 2008, pp. 229-230.
[17] D. Bray, M.B. Bunge, Serial analysis of microtubules in cultured rat sensory axons, Journal of neurocytology, 10(4) (1981) 589-605.
[18] T.D. Pollard, J.A. Cooper, Actin, a central player in cell shape and movement, science, 326(5957) (2009) 1208-1212.
[19] P.C. Wong, J. Marszalek, T.O. Crawford, Z. Xu, S.-T. Hsieh, J.W. Griffin, D.W. Cleveland, Increasing neurofilament subunit NF-M expression reduces axonal NF-H, inhibits radial growth, and results in neurofilamentous accumulation in motor neurons, The Journal of cell biology, 130(6) (1995) 1413-1422.
[20] C. Leterrier, P. Dubey, S. Roy, The nano-architecture of the axonal cytoskeleton, Nature Reviews Neuroscience, 18(12) (2017) 713-726.
[21] D.L. Logan, A first course in the finite element method, Cengage Learning, 2016.
[22] A. Datar, J. Ameeramja, A. Bhat, R. Srivastava, A. Mishra, R. Bernal, J. Prost, A. Callan-Jones, P.A. Pullarkat, The roles of microtubules and membrane tension in axonal beading, retraction, and atrophy, Biophysical journal, 117(5) (2019) 880-891.
[23] D.F. Meaney, Relationship between structural modeling and hyperelastic material behavior: application to CNS white matter, Biomechanics and modeling in mechanobiology, 1(4) (2003) 279-293.
[24] S. GhazaviKhorasgani, B. Vahidi, Mechanical effect on Neuron electrical signal, in: 2017 24th National and 2nd International Iranian Conference on Biomedical Engineering (ICBME), IEEE, pp. 1-6.
[25] D. Kilinc, G. Gallo, K.A. Barbee, Mechanically-induced membrane poration causes axonal beading and localized cytoskeletal damage, Experimental neurology, 212(2) (2008) 422-430.