[1] X. Zhang, S. Chan, G. Li, H. Ho, J. Li, Z. Feng, A review of integration strategies for solid oxide fuel cells, Journal of Power Sources, 195(3) (2010) 685-702.
[2] T. Araki, T. Ohba, S. Takezawa, K. Onda, Y. Sakaki, Cycle analysis of planar SOFC power generation with serial connection of low and high temperature SOFCs, Journal of Power Sources, 158(1) (2006) 52-59.
[3] T. Araki, T. Taniuchi, D. Sunakawa, M. Nagahama, K. Onda, T. Kato, Cycle analysis of low and high H2 utilization SOFC/gas turbine combined cycle for CO2 recovery, Journal of Power Sources, 171(2) (2007) 464-470.
[4] M. Yokoo, K. Watanabe, M. Arakawa, Y. Yamazaki, Numerical evaluation of a parallel fuel feeding SOFC–PEFC system using seal-less planar SOFC stack, Journal of power sources, 153(1) (2006) 18-28.
[5] Q. Meng, J. Han, L. Kong, H. Liu, T. Zhang, Z. Yu, Thermodynamic analysis of combined power generation system based on SOFC/GT and transcritical carbon dioxide cycle, International Journal of Hydrogen Energy, 42(7) (2017) 4673-4678.
[6] M. Balat, Potential importance of hydrogen as a future solution to environmental and transportation problems, International journal of hydrogen energy, 33(15) (2008) 4013-4029.
[7] C.-J. Winter, Hydrogen energy—Abundant, efficient, clean: A debate over the energy-system-of-change, International journal of hydrogen energy, 34(14) (2009) S1-S52.
[8] J.S. Kang, D.H. Kim, S.D. Lee, S.I. Hong, D.J. Moon, Nickel-based tri-reforming catalyst for the production of synthesis gas, Applied Catalysis A: General, 332(1) (2007) 153-158.
[9] N. Muradov, T. Veziroǧlu, From hydrocarbon to hydrogen–carbon to hydrogen economy, International journal of hydrogen energy, 30(3) (2005) 225-237.
[10] N.R. Udengaard, Hydrogen production by steam reforming of hydrocarbons, Houston, Texas, 77058(49) (2004) 2.
[11] V.P. Rathod, J. Shete, P.V. Bhale, Experimental investigation on biogas reforming to hydrogen rich syngas production using solar energy, International journal of hydrogen energy, 41(1) (2016) 132-138.
[12] F. Cipitì, O. Barbera, N. Briguglio, G. Giacoppo, C. Italiano, A. Vita, Design of a biogas steam reforming reactor: A modelling and experimental approach, international journal of hydrogen energy, 41(27) (2016) 11577-11583.
[13] S. Campanari, L. Mastropasqua, M. Gazzani, P. Chiesa, M.C. Romano, Predicting the ultimate potential of natural gas SOFC power cycles with CO2 capture–Part A: Methodology and reference cases, Journal of Power Sources, 324 (2016) 598-614.
[14] M.M. Whiston, W.O. Collinge, M.M. Bilec, L.A. Schaefer, Exergy and economic comparison between kW-scale hybrid and stand-alone solid oxide fuel cell systems, Journal of Power Sources, 353 (2017) 152-166.
[15] S. Zhang, H. Liu, M. Liu, E. Sakaue, N. Li, Y. Zhao, An efficient integration strategy for a SOFC-GT-SORC combined system with performance simulation and parametric optimization, Applied Thermal Engineering, 121 (2017) 314-324.
[16] M. Ebrahimi, I. Moradpoor, Combined solid oxide fuel cell, micro-gas turbine and organic Rankine cycle for power generation (SOFC–MGT–ORC), Energy Conversion and Management, 116 (2016) 120-133.
[17] F.A. Al-Sulaiman, I. Dincer, F. Hamdullahpur, Energy analysis of a trigeneration plant based on solid oxide fuel cell and organic Rankine cycle, International Journal of Hydrogen Energy, 35(10) (2010) 5104-5113.
[18] F.A. Al-Sulaiman, I. Dincer, F. Hamdullahpur, Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production, Journal of power sources, 195(8) (2010) 2346-2354.
[19] L.K.C. Tse, S. Wilkins, N. McGlashan, B. Urban, R. Martinez-Botas, Solid oxide fuel cell/gas turbine trigeneration system for marine applications, Journal of Power Sources, 196(6) (2011) 3149-3162.
[20] C. Acar, I. Dincer, Comparative assessment of hydrogen production methods from renewable and non-renewable sources, International journal of hydrogen energy, 39(1) (2014) 1-12.
[21] S.G. Gargari, M. Rahimi, H. Ghaebi, Thermodynamic analysis of a novel power-hydrogen cogeneration system, Energy Conversion and Management, 171 (2018) 1093-1105.
[22] M. Rabbani, I. Dincer, Energetic and exergetic assessments of glycerol steam reforming in a combined power plant for hydrogen production, International Journal of Hydrogen Energy, 40(34) (2015) 11125-11132.
[23] H. Ghaebi, M. Yari, S.G. Gargari, H. Rostamzadeh, Thermodynamic modeling and optimization of a combined biogas steam reforming system and organic Rankine cycle for coproduction of power and hydrogen, Renewable energy, 130 (2019) 87-102.
[24] M. Rahimpour, M. Dehnavi, F. Allahgholipour, D. Iranshahi, S. Jokar, Assessment and comparison of different catalytic coupling exothermic and endothermic reactions: a review, Applied Energy, 99 (2012) 496-512.
[25] U. Izquierdo, V. Barrio, N. Lago, J. Requies, J. Cambra, M. Güemez, P. Arias, Biogas steam and oxidative reforming processes for synthesis gas and hydrogen production in conventional and microreactor reaction systems, International Journal of Hydrogen Energy, 37(18) (2012) 13829-13842.
[26] P. Kolbitsch, C. Pfeifer, H. Hofbauer, Catalytic steam reforming of model biogas, Fuel, 87(6) (2008) 701-706.
[27] P. Gangadharan, K.C. Kanchi, H.H. Lou, Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane, Chemical Engineering Research and Design, 90(11) (2012) 1956-1968.
[28] A.M. Lavasani, H. Ghaebi, Economic and thermodynamic evaluation of a new solid oxide fuel cell based polygeneration system, Energy, 175 (2019) 515-533.
[29] S. Ahmadi, H. Ghaebi, A. Shokri, A comprehensive thermodynamic analysis of a novel CHP system based on SOFC and APC cycles, Energy, 186 (2019) 115899.
[30] A. Bejan, G. Tsatsaronis, M. Moran, Thermal Design and Optimization John Wiley and Sons, Inc. New York, (1996).
[31] S. Ma, J. Wang, Z. Yan, Y. Dai, B. Lu, Thermodynamic analysis of a new combined cooling, heat and power system driven by solid oxide fuel cell based on ammonia–water mixture, Journal of power sources, 196(20) (2011) 8463-8471.
[32] S.G. Gargari, M. Rahimi, H. Ghaebi, Energy, exergy, economic and environmental analysis and optimization of a novel biogas-based multigeneration system based on Gas Turbine-Modular Helium Reactor cycle, Energy Conversion and Management, 185 (2019) 816-835.
[33] M. Yari, A.S. Mehr, S.M.S. Mahmoudi, M. Santarelli, A comparative study of two SOFC based cogeneration systems fed by municipal solid waste by means of either the gasifier or digester, Energy, 114 (2016) 586-602.