[1] R. Bogue, Exoskeletons and robotic prosthetics: a review of recent developments, Industrial Robot: An International Journal, 36(5) (2009) 421-427.
[2] R. S. Mosher, Handy man to Hardiman, Technical Report, SAE Technical Paper, (1967).
[3] M. Vukobratovic, B. Borovac, D. Surla, D. Stokic, Biped Locomotion, Springer-Verlag, Berlin, (1990) 1-349.
[4] S. Jezernik, G. Colombo, T. Kelly, H. Frueh, M. Morari, Robotic Orthosis Lokomat: A rehabilitation and research tool, Technology at the Neural Interface, 6(1) (2003) 108–115.
[5] A. Duschau-Wicke, T. Brunsch, L. L. ünenburger, R. Riener, Adaptive support for Patient-Cooperative gait rehabilitation with the lokomat, IEEE/RSJ International Conference on Intelligent Robots and Systems Acropolis Convention Center Nice, France, 2008.
[6] H. Kazerooni, Hybrid Control of the berkeley lower extremity exoskeleton (BLEEX), The International Journal of Robotics, 25(2) (2006) 561-573.
[7] B.
Siciliano, O.
Khatib, Springer Handbook of Robotics, Springer-Verlag, Berlin, (2008) 773-793.
[8] T. Yan, M. Cempini, C. M. Oddo, N. Vitiello, Review of assistive strategies in powered lower-limb orthosis and exoskeletons, Robotics and Autonomous Systems, 64(1) (2015) 120-136.
[9] A. J. Ijspeert. Central pattern generators for locomotion control in animals and robots: A review, Neural Networks, 21(2008) 642–653.
[10] K. Fujiwara, F. Kanehiro, S. Kajita, K. Yokoi, H. Saito, K. Harada, K. Kaneko and H. Hirukawa. The first human-size humanoid that can fall over safely and stand up again. In F. Kanehiro, editor, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, 2 (2003) 1920–1926.
[11] C. Li, R. Lowe, T. Ziemke, A novel approach to locomotion learning: Actor-critic architecture using central pattern generators and dynamic motor primitives. Frontiers in Neuro robotics, 8(3) (2014) 1–17.
[12] A. J. Ijspeert, A. Crespi, D. Ryczko, From swimming to walking with a salamander robot driven by a spinal cord model. Science, 315 (2007) 1416–1420
[13] M. H. Chiang, F. R. Chiang. Anthropomorphic design of the human-like walking robot. Journal of Bionic Engineering, 10 (2) (2013) 186–193.
[14] J. Yu, R. Ding, Q. Yang, M. Tan, W. Wang, J. Zhang, On a bio-inspired amphibious robot capable of multimodal motion. IEEE/ASME Transactions on Mechatronics, 17 (2012) 847–856.
[15] Q. D. Wu, C. J. Liu, J. Q. Zhang, Q. J. Chen, Survey of locomotion control of legged robots inspired by biological concept. Science in China Series F: Information Sciences, 52 (2009) 1715–1729.
[16] C. P. Santos, V. Matos, CPG modulation for navigation and omni directional quadruped locomotion. Robotics and Autonomous Systems, 60 (2012) 912–927.
[17] M. E. Abardeh, Unsymmetrical Path Planning for Biped Robot Passing through Obstacles, MS Thesis, Ferdowsi University of Mashhad, (2012).
[18] C. Liu, D. Wang, E. D. Goodman, Qijun Chen. Adaptive Walking Control of Biped Robots Using Online Trajectory Generation Method Based on Neural Oscillators, Journal of Bionic Engineering, 13 (2016) 572–584.
[19] M. O. Ajayi, Modeling and control of actuated lower limb exoskeletons : a mathematical application using central pattern generators and nonlinear feedback control techniques, PHD Thesis, University Paris-Est, (2016).
[20] L. Righetti, A. J. Ijspeert, Programmable central generators: an application to biped locomotion control. Proceedings of the 2006 IEEE International Conference on Robotics and Automation Orlando, Florida - May 2006.
[21] K. Fujiwara, F. Kanehiro, S. Kajita, K. Yokoi, H. Saito, K. Harada, K. Kaneko and H. Hirukawa, Evolution of central pattern generators for the control of a five-link bipedal walking mechanism, PALADYN Journal of Behavioral Robotics, 3(1) (2012) 45-53.
[22] Z. Qu, J. Dorsey, Robust tracking control of robots by a linear feedback law. IEEE Transactions on Automatic Control, 36 (1991) 1081–1084.
[23] Y. Hong, Finite-time stabilization and stability of a class of controllable systems. Systems & control letters,46 (2002) 231–236.
[24] S. Venkataraman, S. Gulati, Terminal sliding modes: A new approach to nonlinear control synthesis, Advanced Robotics, 43(1991) 443–448.
[25] G. Bartolini, A. Ferrara, A. Levant and E. Usai, On second order sliding mode controllers. In Variable structure systems, sliding mode and nonlinear control, Springer, 247 (1999) 329–350.
[26] H. Wang, L. Shi, Z. Man, J. Zheng, S. Li, M. Yu, C. Jiang, H. Kong, Z. Cao, Continuous fast nonsingular terminal sliding mode control of automotive electronic throttle systems using finite-time exact observer, IEEE Trans. Ind. Electron. 65 (2018) 7160–7172.
[27] H. Wang, Z. Man, W. Shen, Z. Cao, J. Zheng, J. Jin, M.T. Do, Robust control for steer-by-wire systems with partially known dynamics, IEEE Trans. Ind. Inf. 10 (2014) 2003–2015.
[28] M. Mokhtari, M. Taghizadeh, M. Mazare, Impedance Control Based on Optimal Adaptive High Order Super Twisting Sliding Mode for a 7-DOF Lower Limb Exoskeleton, meccanica, 56 (2021) 538-548.
[29] J. Yang, J. Su, S. Li, X. Yu, High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach, IEEE Trans. Ind. Inf. 610 (2014) 604–614.
[30] Y. Hu, H. Wang, Robust tracking control for vehicle electronic throttle using adaptive dynamic sliding mode and extended state observer Mechanical, Systems and Signal Processing, 135 (2020) 106375.
[31] G. Shuai, H. J B, Adaptive Dynamic Terminal Sliding Mode Control Method, Second International Conference on Intelligent Computation Technology and Automation, IEEE, (2009) 735-738.
[32] T. Madani, B. Daachi, K. Djouani, Modular -Controller-Design-Based Fast Terminal Sliding Mode for Articulated Exoskeleton Systems, IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 25(3) 2017.
[33] H. Hemami and C. L. Golliday, The inverted pendulum and biped stability, Mathematical Biosciences, (2) (1977) 95-110.
[34] D. Messuri, C. Klein, Automatic body regulation for maintaining stability of a legged vehicle during rough-terrain locomotion. Robotics and Automation, IEEE, 1(3) (1985) 141-132.
[35] S. A. A. Moosavian, K. Alipour, Y. Bahramzadeh. Dynamics modeling and tip-over stability of suspended wheeled mobile robots with multiple arms. In intelligent robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference, USA, 2007.
[36] A. Takhmar, MHS measure for postural stability monitoring and control of biped robots. In Advanced intelligent Mechatronics, 2008 .AIM 2008. IEEE/ASME international Conference on, China, 2008.
[37] S. A. A. Moosavian, A. Takhmar. Stable Gait Planning for Humanoids Motion, in ISME, Iran, 2007.
[38] M. Mokhtari, M. Taghizadeh, M. Mazare, Optimal adaptive super twisting sliding mode control base on zero moment point stability criterion of a lower limb exoskeleton, Amir Kabir journal of mechanical engineering, 50 (4) (2020) 525-532(in Persian).
[40] H. Kawamoto, Y. Sankai, Power assist method based on phase sequence and muscle force condition for HAL, Advanced Robotics, 19(7) (2005) 717-734.
[41] P. K. Kyaw, K. Sandar, M. Khalid, W. Juan, Y. Li, Z. Chen, Opportunities in robotic exoskeletons hybrid assistive limb SUIT (MT5009), Robotic Exoskeletons: Becoming Economically Feasible, 21(1) (2013).
[42] N. Karavas, A. Ajoudani, N. Tsagarakis, Tele-impedance based assistive control for a compliant knee exoskeleton, Robotics and Autonomous Systems, 73 (2015) 78–90.
[43] Õ. S. Davis, P. A. DeLuca, M. J. Romness, Clinical Gait Analysis and Its Role in Treatment Decision-Making, Medscape Orthopaedics & Sports Medicine Journal, 2 (1998).
[44] Y. Farzaneh, A. Akbarzadeh, A. Akbari, New automated learning CPG for rhythmic patterns. Intelligent Service Robotics, 5(3) (2012) 169-177.
[45] T. Madani, B. Daachi, K. Djouani, Modular -Controller-Design-Based Fast Terminal Sliding Mode for Articulated Exoskeleton Systems, IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 25 (3) 2017.
[46] J. Yang, J. Su, S. Li, X. Yu, High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach, IEEE Trans. Ind. Informt. 610 (2014) 604–614.
[47] R. C. Richardson, Actuation and control for robotic physiotherapy, PHD thesis, School of Mechanical Engineering University of Leeds, March 2001.
[48]P. N. Mousavi, A. Bagheri, Mathematical Simulation of a Seven Link Biped Robot on Various Surfaces and ZMP Considerations, Applied Mathematical Modeling, Elsevier, 31 (1) (2007) 18-37.