تحلیل دینامیکی پوسته‌های استوانه‌ای تقویت‌شده تحت فشار داخلی متحرک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد- دانشکده مکانیک و فناوری های ساخت - دانشگاه صنعتی مالک اشتر - تهران - ایران

2 پژوهشکده مکانیک و فناوری های ساخت/مجتمع دانشگاهی مواد و فناوری های ساخت/دانشگاه صنعتی مالک اشتر/تهران

چکیده

پوسته‌های استوانه‌ای تقویت شده کاربرد فراوانی در بسیاری از شاخه‌های مهندسی از قبیل کشتی‌ها، زیردریایی و مخازن سوخت هواپیما  دارد. در اکثر این موارد پوسته تحت بارهای دینامیکی قرار می‌گیرد. یکی از بار‌های دینامیکی که می‌تواند به این پوسته‌ها وارد شود فشار داخلی متحرک می‌باشد. تحلیل پوسته استوانه‌ای تقویت شده تحت فشار داخلی متحرک در این پژوهش مورد مطالعه قرار گرفته است. معادلات حرکت بر اساس تئوری کلاسیک پوسته  با استفاده از روش همیلتون استخراج شده‌اند. شرایط مرزی پوسته دو سر ساده در نظر گرفته شده است. مؤلفه‌های جابه‌جایی با توجه به شرایط مرزی به‌صورت بسط سری فوریه دوگانه نوشته شده‌اند. برای بدست آوردن فرکانس طبیعی و پاسخ پوسته استوانه‌ای تحت بارگذاری متحرک داخلی معادلات حرکت با استفاده از روش توابع وزنی گالرکین حل شد‌ه‌اند. برای به‌دست‌آوردن فرکانس‌های طبیعی و پاسخ زمانی پوسته کدهایی به زبان فرترن نوشته شد‌ه‌اند و نتایج با پاسخ مراجع دیگر و پاسخ نرم افزار آباکوس مقایسه شده‌اند و در نهایت تأثیر پارامترهای هندسی بر فرکانس‌های طبیعی و پاسخ زمانی پوسته استوانه‌ای تقویت شده تحت فشار داخلی متحرک بررسی شده است و نتایج برای پوسته تقویت‌نشده و پوسته تقویت‌شده با تقویت‌کننده‌های مختلف مقایسه شده‌اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Free and Forced Vibration Analysis of Stiffened Cylindrical Shells under Moving Internal Pressure

نویسندگان [English]

  • Reza Arab 1
  • Hosein Lexian 2
1 MSc student, Mechanical Engineering,- Malek Ashtar University of Technology (MUT), -Tehran,- Iran
2 Malek-e-Ashtar University of Technology/ Faculty of Materials & Manufacturing Processes
چکیده [English]

Cylindrical shells are used tremendously in many engineering fields such as ships, submarines, and fuel tanks in airplanes. In many cases, shells are exposed to dynamic loads. One of the dynamic loads in shells is internal moving pressure. Analysis of cylindrical stiffened shells under moving internal pressure are investigated in this research. Equations of motion are based on classic shell theory and derived from Hamilton’s method. Boundary conditions are assumed simply support. Displacement components are assumed Fourie double series based on boundary conditions. Equations of motions are solved by Galerkin weighted functions method for calculation of natural frequency and dynamic response of cylindrical shells under moving internal pressure. Codes in FORTRAN are used to derive the natural frequency and dynamic response of cylindrical shells. Results are compared with other references and Abaqus software. The effect of geometrical parameters on natural frequency and dynamic response of cylindrical shells under moving internal pressure are investigated finally and results for stiffened shells and unstiffened shells with different stiffeners are compared.

کلیدواژه‌ها [English]

  • Cylindrical shells
  • Ring & stringer stiffeners
  • Free vibration
  • Dynamic analysis
  • Moving internal pressure
[1] Hoppmann WH, Some characteristics of the flexural vibrations of orthogonally stiffened cylindrical shells, Journal of the Acoustical Society of America, 30 (1958) 77-82.
[2] Galletly GD, On the in-vacuo vibrations of simply supported, ring-stiffened cylindrical shells, U.S. National Congress of Applied Mechanics (1995) 225-231.
 [3] Martin M.Mikulas.Jr and  McElman, On free vibration of eccentrically stiffened cylindrical shells and plates, NASA Technical Note D-3010 24 (1965).
[4] s.Tang, DynamicResponse of aTube under moving pressure, Preceding of American Society of Civil Engineers, 5 (1965) 97-122.
[5] Egle DM and Sewall JL, Analysis of free vibration of orthogonally stiffened cylindrical shells with stiffeners treated as discrete elements, Journal of AIAA,  6 (3) (1968) 518-526.
[6] Rasmann. H, Response of a cylindrical shell to an inclined, moving pressure discontinuity (shock wave), Journal of Sound and Vibration,  8, (2) (1968) 240-255.
[7] Dobyns. A. L, Analysis of Simply-Supported Orthotropic Plates Subject to Static and Dynamic Loads, AIAA Journal, vol.19  (5) (1981)  642–650.
[8] Shirakawa. K, Dynamic response of a pre-stressed cylindrical shell to a moving load, Journal of Sound and Vibration,  90,(2) (1983) 263–273.
[9] Cederbaum. G and  Heller. R. A, Dynamic deformation of orthotropic cylinders, Journal of Pressure Vessel Technology. Transactions of the ASME,111(2) (1989) 97–101.
[10] Mustafa B.A.J and Ali R, An energy method for free vibration analysis of stiffened circular cylindrical shells, Journal of Computers and Structures, 32 (2) (1989) 335-363.
[11] Y.S.Lee and K.D. Lee, On the dynamic response of laminated circular cylindrical shells  under impulse loads, computers and structures,  63 (1997) 149–157.
[12] Wang CM. Swaddiwudhipong and Tian J, Ritz method for vibration analysis of cylindrical shells with ring stiffeners Journal of Engineering Mechanics, 42 (1997) 123-134.
[13] Ruotolo R, A comparison of some thin shell theories used for the dynamic analysis of stiffened cylinders, Journal of Sound and Vibration,vol. 243(5) (2001) 847-860,
[14] Zhao X and Liew KM, Vibration of rotating cross-ply laminated circular cylindrical shells with stringer and ring stiffeners, Journal of Solids and Structures 39 (2002), 529-545
[15] Jafari AA and Bagheri M, Free vibration of non-uniformly ring stiffened cylindrical shells using analytical, experimental and numerical methods, Journal of ThinWalled Structures 44 (2006) 89-90.
[16] Bagheri M and Jafari AA, Analytical and experimental modal analysis of nonuniformly ring-stiffened cylindrical shells, Archive of Applied Mechanics, 75 (2006) 177-191.
[17] S.M.R. Khalili, R. Azarafza and A. Davar, Transient dynamic response of initially stressed composite circular           cylindrical shells under radial impulse load, Journal of Composite Structures, 89 (2009) 275-284.
[18] A. Sofiyev, Dynamic response of an FGM cylindrical shell under moving loads, Journal of Composite Structures, 93 (2010) 58-66
[19] Dao Van Dung and  Vu Hoai Nam, Nonlinear dynamic analysis of eccentrically stiffened functionally graded circular cylindrical thin shells under external pressure and surrounded by an elastic medium, European Journal of Mechanics A/Solids, 46(2014) 42-53.
[20] M. Mirzaei, M. T. Asadi and R. Akbari, vibrational behavior of pulse detonation engine tubes, Aerospace Science and Technology,47 (2015) 177-190.
[21] yang.j, Xiong,J.,Ma,L., NaFeng,L and YangWang,S.,ZhiWu,L., Modal Response of All-Composite Corrugated Sandwich Cylindrical Shells, Composites Science and Technology, 115(2015) 9-20.
[22] Duc.N.D and Thang.P.T, Nonlinear Dynamic Response and Vibration of Shear Deformable Imperfect Eccentrically Stiffened S-FGM Circular Cylindrical Shells Surrounded on Elastic Foundations, j.ast, 40 (2015) 115–127.
[23] Qina.X.C, Wangb.F.and Gonga.Y.P, Free Vibration Analysis of Isogeometric Curvi Linearly Stiffened Shells, ThinWalled Structures, 116 (2017) 124–135.
[24]  E.Hasrati,R.Ansari and J. Torabi, A novel numerical solution strategy for solving nonlinear free and forced vibration problems of cylindrical shells, Applied Mathematical Modelling, 32 (2018) 30-45.
 [25] M Arazm.H Eipakchi and M Ghannad, Vibrational behavior investigation of axially functionally graded cylindrical shells under moving pressure, Acta Mechanica, 230 (2019) 3221-3234.
[26] A. Sofiyev,R. Pasha, The forced vibration of infinitely long cylinders reinforced by carbon nanotubes subjected to combined internal and ring‐shaped compressive pressures, Mathematical Methods in the Applied Sciences, 1 (2020) 1-12.
[27] H. Ramezani,M. Mirzaei, Transient elastodynamic behavior of cylindrical tubes under moving pressures and different boundary conditions, Applied Mathematical Modeling 77 (2020)  934-949,
[28] H. Eipakchi,F. Mahboubi, Vibrational behavior of composite cylindrical shells with auxetic honeycombs core layer subjected to a moving pressure, Composite Structures, 254 (2020).