[1] T.C. Corke, F.O. Thomas, Dynamic stall in pitching airfoils: aerodynamic damping and compressibility effects, Annual Review of Fluid Mechanics, 47 (2015) 479-505.
[2] A. Brocklehurst, High resolution methods for the aerodynamic design of helicopter rotors, Citeseer, 2013.
[3] N.D. Ham, Aerodynamic loading on a two-dimensional airfoil during dynamic stall, AIAA journal, 6(10) (1968) 1927-1934.
[4] N.D. Ham, M.S. Garelick, Dynamic stall considerations in helicopter rotors, Journal of the American Helicopter Society, 13(2) (1968) 49-55.
[5] W. McCroskey, R. Fisher, Dynamic stall of airfoils and helicopter rotors, AGARD R, 595 (1972) 2.1-2.7.
[6] W.G. Bousman, A qualitative examination of dynamic stall from flight test data, Journal of the American Helicopter Society, 43(4) (1998) 279-295.
[7] M. Potsdam, H. Yeo, W. Johnson, Rotor airloads prediction using loose aerodynamic/structural coupling, Journal of Aircraft, 43(3) (2006) 732-742.
[8] A. Spentzos, G. Barakos, K. Badcock, B. Richards, F. Coton, R.M. Galbraith, E. Berton, D. Favier, Computational fluid dynamics study of three-dimensional dynamic stall of various planform shapes, Journal of Aircraft, 44(4) (2007) 1118-1128.
[9] A. Abhishek, S. Ananthan, J. Baeder, I. Chopra, Prediction and fundamental understanding of stall loads in UH-60A pull-up maneuver, Journal of the American Helicopter Society, 56(4) (2011) 1-14.
[10] A.D. Gardner, K. Richter, Influence of rotation on dynamic stall, Journal of the American Helicopter Society, 58(3) (2013) 1-9.
[11] K. Gharali, D.A. Johnson, Dynamic stall simulation of a pitching airfoil under unsteady freestream velocity, Journal of Fluids and Structures, 42 (2013) 228-244.
[12] A. Zanotti, R. Nilifard, G. Gibertini, A. Guardone, G. Quaranta, Assessment of 2D/3D numerical modeling for deep dynamic stall experiments, Journal of Fluids and Structures, 51 (2014) 97-115.
[13] V. Raghav, N. Komerath, Advance ratio effects on the flow structure and unsteadiness of the dynamic-stall vortex of a rotating blade in steady forward flight, Physics of Fluids, 27(2) (2015) 027101.
[14] J. Letzgus, M. Keßler, E. Krämer, CFD-simulation of three-dimensional dynamic stall on a rotor with cyclic pitch control, (2015).
[15] C.B. Merz, C. Wolf, K. Richter, K. Kaufmann, A. Mielke, M. Raffel, Spanwise differences in static and dynamic stall on a pitching rotor blade tip model, Journal of the American Helicopter Society, 62(1) (2017) 1-11.
[16] M.R. Visbal, D.J. Garmann, Numerical investigation of spanwise end effects on dynamic stall of a pitching NACA 0012 wing, in: 55th AIAA aerospace sciences meeting, 2017, pp. 1481.
[17] F. Richez, Analysis of dynamic stall mechanisms in helicopter rotor environment, Journal of the American Helicopter Society, 63(2) (2018) 1-11.
[18] Q. Wang, Q. Zhao, Numerical Study on Dynamic-Stall Characteristics of Finite Wing and Rotor, Applied Sciences, 9(3) (2019) 600.
[19] J. Letzgus, M. Keßler, E. Krämer, Simulation of Dynamic Stall on an Elastic Rotor in High-Speed Turn Flight, Journal of the American Helicopter Society, 65(2) (2020) 1-12.
[20] S. Karimian, S. Aramian, A. Abdolahifar, Numerical investigation of dynamic stall reduction on helicopter blade section in forward flight by an airfoil deformation method, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(2) (2021) 1-17.
[21] A. Inc, ANSYS FLUENT theory guide (Release 19). Multiphase Flows, in, Ansys Inc, 2017.
[22] J. McNaughton, I. Afgan, D. Apsley, S. Rolfo, T. Stallard, P. Stansby, A simple sliding‐mesh interface procedure and its application to the CFD simulation of a tidal‐stream turbine, International journal for numerical methods in fluids, 74(4) (2014) 250-269.
[23] R. Steijl, G. Barakos, Sliding mesh algorithm for CFD analysis of helicopter rotor–fuselage aerodynamics, International journal for numerical methods in fluids, 58(5) (2008) 527-549.
[24] R. Steijl, G. Barakos, K. Badcock, CFD Analysis of rotor-fuselage aerodynamics based on a sliding mesh algorithm, (2007).
[25] F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA journal, 32(8) (1994) 1598-1605.
[26] F. Tejero Embuena, P. Doerffer, O. Szulc, Application of passive flow control device on helicopter rotor blades, Journal of the American Helicopter Society, (2015).
[27] F.J. Hernandez, Correlation of airloads on a two-bladed helicopter rotor, National Aeronautics and Space Administration, Ames Research Center, 1993.
[28] F. Frey, J. Herb, J. Letzgus, P. Weihing, M. Keßler, E. Krämer, Enhancement and application of the flow solver FLOWer, in: High Performance Computing in Science and Engineering'18, Springer, 2019, pp. 323-336.
[29] J. Thiemeier, C. Öhrle, F. Frey, M. Keßler, E. Krämer, Aerodynamics and flight mechanics analysis of Airbus Helicopters’ compound helicopter RACER in hover under crosswind conditions, CEAS Aeronautical Journal, 11(1) (2020) 49-66.
[30] G.J. Leishman, Principles of helicopter aerodynamics with CD extra, Cambridge university press, 2006.
[31] J. Jeong, F. Hussain, On the identification of a vortex, Journal of fluid mechanics, 285 (1995) 69-94.
[32] J. DiOttavio, K. Watson, J. Cormey, S. Kondor, N. Komerath, Discrete structures in the radial flow over a rotor blade in dynamic stall, in: 26th AIAA Applied Aerodynamics Conference, 2008, pp. 7344.