[1] P. Favoriti, G. Carbone, M. Greco, F. Pirozzi, R.E.M. Pirozzi, F. Corcione, Worldwide burden of colorectal cancer: a review, Updates in surgery, 68(1) (2016) 7-11.
[2] A. Burges, B. Schmalfeldt, Ovarian cancer: diagnosis and treatment, Deutsches Ärzteblatt International, 108(38) (2011) 635.
[3] B. Sadeghi, C. Arvieux, O. Glehen, A.C. Beaujard, M. Rivoire, J. Baulieux, E. Fontaumard, A. Brachet, J.L. Caillot, J.L. Faure, Peritoneal carcinomatosis from non‐gynecologic malignancies: results of the EVOCAPE 1 multicentric prospective study, Cancer: Interdisciplinary International Journal of the American Cancer Society, 88(2) (2000) 358-363.
[4] G. Montori, F. Coccolini, M. Ceresoli, F. Catena, N. Colaianni, E. Poletti, L. Ansaloni, The treatment of peritoneal carcinomatosis in advanced gastric cancer: state of the art, International journal of surgical oncology, 2014 (2014).
[5] D. Sloothaak, B. Mirck, C. Punt, W. Bemelman, J. Van Der Bilt, A. D’Hoore, P. Tanis, Intraperitoneal chemotherapy as adjuvant treatment to prevent peritoneal carcinomatosis of colorectal cancer origin: a systematic review, British journal of cancer, 111(6) (2014) 1112-1121.
[6] A.A. Wright, A. Cronin, D.E. Milne, M.A. Bookman, R.A. Burger, D.E. Cohn, M.C. Cristea, J.J. Griggs, N.L. Keating, C.F. Levenback, Use and effectiveness of intraperitoneal chemotherapy for treatment of ovarian cancer, Journal of Clinical Oncology, 33(26) (2015) 2841.
[7] F. Quénet, D. Elias, L. Roca, D. Goéré, L. Ghouti, M. Pocard, O. Facy, C. Arvieux, G. Lorimier, D. Pezet, Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy versus cytoreductive surgery alone for colorectal peritoneal metastases (PRODIGE 7): a multicentre, randomised, open-label, phase 3 trial, The Lancet Oncology, 22(2) (2021) 256-266.
[8] A. Bhatt, Management of peritoneal metastases-cytoreductive surgery, HIPEC and beyond, Springer, 2018.
[9] L. Bijelic, T.D. Yan, P.H. Sugarbaker, Failure analysis of recurrent disease following complete cytoreduction and perioperative intraperitoneal chemotherapy in patients with peritoneal carcinomatosis from colorectal cancer, Annals of Surgical Oncology, 14(8) (2007) 2281-2288.
[10] I. Königsrainer, P. Horvath, F. Struller, V. Forkl, A. Königsrainer, S. Beckert, Risk factors for recurrence following complete cytoreductive surgery and HIPEC in colorectal cancer-derived peritoneal surface malignancies, Langenbeck's archives of surgery, 398(5) (2013) 745-749.
[11] T.R. Van Oudheusden, H. Grull, P.Y.W. Dankers, I.H.J.T. De Hingh, Targeting the peritoneum with novel drug delivery systems in peritoneal carcinomatosis: a review of the literature, Anticancer research, 35(2) (2015) 627-634.
[12] L.A. Lambert, Looking up: recent advances in understanding and treating peritoneal carcinomatosis, CA: a cancer journal for clinicians, 65(4) (2015) 283-298.
[13] F.M. Kashkooli, M. Soltani, M. Souri, C. Meaney, M. Kohandel, Nexus between in silico and in vivo models to enhance clinical translation of nanomedicine, Nano Today, 36 (2021) 101057.
[14] L. De Smet, W. Ceelen, J.P. Remon, C. Vervaet, Optimization of drug delivery systems for intraperitoneal therapy to extend the residence time of the chemotherapeutic agent, The Scientific World Journal, 2013 (2013).
[15] K. Hirano, C.A. Hunt, A. Strubbe, R.D. MacGregor, Lymphatic transport of liposome-encapsulated drugs following intraperitoneal administration–effect of lipid composition, Pharmaceutical research, 2(6) (1985) 271-278.
[16] S. Siavashy, M. Soltani, F. Ghorbani-Bidkorbeh, N. Fallah, G. Farnam, S.A. Mortazavi, F.H. Shirazi, M.H.H. Tehrani, M.H. Hamedi, Microfluidic platform for synthesis and optimization of chitosan-coated magnetic nanoparticles in cisplatin delivery, Carbohydrate Polymers, 265 (2021) 118027.
[17] M. Soltani, M.H. Tehrani, F.M. Kashkooli, M. Rezaeian, Effects of magnetic nanoparticle diffusion on microwave ablation treatment: A numerical approach, Journal of Magnetism and Magnetic Materials, 514 (2020) 167196.
[18] F. Moradi Kashkooli, M. Soltani, M.H. Hamedi, Image-based numerical model for drug delivery to solid tumors, Amirkabir Journal of Mechanical Engineering, 53(5 (Special Issue)) (2021) 5-5.
[19] M. Rezaeian, M. Soltani, F. Moradi Kashkooli, On the Modeling of Drug Delivery to Solid Tumors; Computational Viewpoint, in: International Conference on Applied Mathematics, Modeling and Computational Science, Springer, 2019, pp. 601-610.
[20] M. Steuperaert, C. Debbaut, C. Carlier, O. De Wever, B. Descamps, C. Vanhove, W. Ceelen, P. Segers, A 3D CFD model of the interstitial fluid pressure and drug distribution in heterogeneous tumor nodules during intraperitoneal chemotherapy, Drug delivery, 26(1) (2019) 404-415.
[21] J.L.-S. Au, P. Guo, Y. Gao, Z. Lu, M.G. Wientjes, M. Tsai, M.G. Wientjes, Multiscale tumor spatiokinetic model for intraperitoneal therapy, The AAPS journal, 16(3) (2014) 424-439.
[22] M. Steuperaert, G. Falvo D’Urso Labate, C. Debbaut, O. De Wever, C. Vanhove, W. Ceelen, P. Segers, Mathematical modeling of intraperitoneal drug delivery: simulation of drug distribution in a single tumor nodule, Drug delivery, 24(1) (2017) 491-501.
[23] M. Shamsi, A. Sedaghatkish, M. Dejam, M. Saghafian, M. Mohammadi, A. Sanati-Nezhad, Magnetically assisted intraperitoneal drug delivery for cancer chemotherapy, Drug delivery, 25(1) (2018) 846-861.
[24] F.M. Kashkooli, M. Soltani, M.-H. Hamedi, Drug delivery to solid tumors with heterogeneous microvascular networks: Novel insights from image-based numerical modeling, European Journal of Pharmaceutical Sciences, 151 (2020) 105399.
[25] L.T. Baxter, R.K. Jain, Transport of fluid and macromolecules in tumors: III. Role of binding and metabolism, Microvascular research, 41(1) (1991) 5-23.
[26] M. Sefidgar, M. Soltani, K. Raahemifar, M. Sadeghi, H. Bazmara, M. Bazargan, M.M. Naeenian, Numerical modeling of drug delivery in a dynamic solid tumor microvasculature, Microvascular research, 99 (2015) 43-56.
[27] A. Sedaghatkish, M. Rezaeian, H. Heydari, A.M. Ranjbar, M. Soltani, Acoustic streaming and thermosensitive liposomes for drug delivery into hepatocellular carcinoma tumor adjacent to major hepatic veins; an acoustics–thermal–fluid-mass transport coupling model, International Journal of Thermal Sciences, 158 (2020) 106540.
[28] F.M. Kashkooli, M. Soltani, M. Rezaeian, C. Meaney, M.-H. Hamedi, M. Kohandel, Effect of vascular normalization on drug delivery to different stages of tumor progression: In-silico analysis, Journal of Drug Delivery Science and Technology, 60 (2020) 101989.
[29] L.T. Baxter, R.K. Jain, Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection, Microvascular research, 37(1) (1989) 77-104.
[30] F.M. Kashkooli, M. Soltani, M. Rezaeian, E. Taatizadeh, M.-H. Hamedi, Image-based spatio-temporal model of drug delivery in a heterogeneous vasculature of a solid tumor—Computational approach, Microvascular research, 123 (2019) 111-124.
[31] W. Deen, Hindered transport of large molecules in liquid‐filled pores, AICHE journal, 33(9) (1987) 1409-1425.
[32] Y. Boucher, L.T. Baxter, R.K. Jain, Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy, Cancer research, 50(15) (1990) 4478-4484.
[33] M. Rezaeian, A. Sedaghatkish, M. Soltani, Numerical modeling of high-intensity focused ultrasound-mediated intraperitoneal delivery of thermosensitive liposomal doxorubicin for cancer chemotherapy, Drug delivery, 26(1) (2019) 898-917.
[34] L.T. Baxter, R.K. Jain, Transport of fluid and macromolecules in tumors. II. Role of heterogeneous perfusion and lymphatics, Microvascular research, 40(2) (1990) 246-263.
[35] M. Sefidgar, M. Soltani, K. Raahemifar, H. Bazmara, S.M.M. Nayinian, M. Bazargan, Effect of tumor shape, size, and tissue transport properties on drug delivery to solid tumors, Journal of biological engineering, 8(1) (2014) 1-13.
[36] M. Soltani, P. Chen, Numerical modeling of fluid flow in solid tumors, PloS one, 6(6) (2011) e20344.
[37] C.-Y. Chou, W.-I. Chang, T.-L. Horng, W.-L. Lin, Numerical modeling of nanodrug distribution in tumors with heterogeneous vasculature, Plos one, 12(12) (2017) e0189802.
[38] T. Stylianopoulos, E.-A. Economides, J.W. Baish, D. Fukumura, R.K. Jain, Towards optimal design of cancer nanomedicines: Multi-stage nanoparticles for the treatment of solid tumors, Annals of biomedical engineering, 43(9) (2015) 2291-2300.
[39] W. Zhan, X.Y. Xu, A mathematical model for thermosensitive liposomal delivery of doxorubicin to solid tumour, Journal of drug delivery, 2013 (2013).
[40] F. Mpekris, J.W. Baish, T. Stylianopoulos, R.K. Jain, Role of vascular normalization in benefit from metronomic chemotherapy, Proceedings of the National Academy of Sciences, 114(8) (2017) 1994-1999.
[41] D. Kerr, A. Kerr, R. Freshney, S. Kaye, Delivery of molecular and cellular medicine to solid tumors, Biochem Pharmacol, 35 (1986) 12817-12823.