[1] McCormick, M. E., Bhattacharyya, R., “Drag reduction of a submersible hull by electrolysis”, Naval Eng.J, vol. 85, pp. 11-16,1973.
[2] Bodgevich, V. G., Evseev, A. R., “The distribution of skin friction in a turbulent boundary layer of water beyond the location of gas injection”, Investigations of Boundary Layer Control (in Russian), Thermophysics Institute Publishing House, vol. 62, 1976.
[3] Madavan, N. K., Deutsch, S., Merkle, C. L., “Reduction of turbulent skin friction by microbubblesc”, Phys. Fluids, vol. pp. 27, 356-363, 1984.
[4] Madavan, N. K., Merkle, C. L., Deutsch, S., “Numerical investigations into the mechanisms of microbubble drag reduction”, J. Fluids Eng, vol. 107, pp. 370-377, 1985.
[5] Pal, S., “Turbulence characteristics and bubble dynamics of a microbubble modified boundary layer”, Ph.D. thesis, The Pennsylvania State University. 1989.
[6] Fontaine, A. A., Deutsch, S., Brungart, T. A., Petrie, H. L., Fenstermacker, M., “Drag reduction by coupled systems: microbubble injection with homogeneous polymer and
surfactant solutions”, Exp. Fluids, vol. 26, pp. 397-403, 1999.
[7] Kanai, A., Miyata, H., “Direct numerical simulation of wall turbulent flows with micro bubbles”, Int. J. Numer. Meth Fluids, vol. 35, pp. 593-615, 2001.
[8] Xu, J., Maxey, M. R., Karniadakis, G. E., “Numerical simulation of turbulent drag reduction using micro-bubbles”. J. Fluid Mech, vol. 468, pp. 271-281, 2002.
[9] Lu, J., Fernandez, A., Tryggvason, G., “The effect of bubbles on the wall drag in a turbulent channel flow”, Phys. Fluids, vol. 17, pp. 95-102, 2005.
[10] Murai, Y., Fukuda, H., Oishi, Y., Kodama, Y., Yamamoto, F., “Skin friction reduction by large air bubbles in a horizontal channel flow”. Int. J. Multiphase .Flow, vol. 33, pp. 147–163, 2007.
[11] Couette, M., “Etudes sur le frottement des liquides”, Ann.Chim. Phys, vol. 21, pp. 433-510,1890.
[12] Mallock, A., “Experiments on fluid viscosity”, Phil Trans R Soc Lond. A, vol. 93, 41, 1896.
[13] Rayleigh, L., “On the dynamics of revolving fluids”, Proc., Roy. Sac. London. A, Vol. 93, pp. 148-154,1916.
[14] Taylor, G. I., “Stability of a viscous liquid contained between two rotating cylinders”, Phil.Trans. Roy. Soc. Lond. A, vol. 223, pp. 289-343,1923.
[15] Cornish, J. A., “Flow of water through fine clearances with relative motion of the boundaries”, Proc. R. Soc. Lond. A, vol. 140, pp. 227-240, 1933.
[16] Goldstein, S., “The stability of viscous fluid flow between rotating cylinders”, Proc. Camb.Phil. Soc, vol. 33,pp. 41-61,1937.
[17] Chandrasekhar, S., “The hydrodynamic stability of viscous flow between coaxial cylinders”, Proc. Natl Acad. Sci, vol. 46, pp. 141-143,1960.
[18] Di Prima, R. C., “The stability of a viscous fluid between rotating cylinders with an axial flow”, J. Fluid Mech, vol. 9,pp. 621-631,1960.
[19] Donnelly, R. J., Fultz, D., “Experiments on the stability of spiral flow between rotating cylinders”, Proc. Natl Acad. Sci, vol. 46, pp. 1150-1154,1960.
[20] Shiomi, Y., Kutsuna, H., Akagawa, K., Ozawa, M., “Two-phase flow in an annulus with a rotating inner cylinder—flow pattern in bubbly flow region”, Nucl. Eng. Des, vol. 141, pp. 27-34. 1993.
[21] Atkhen, K., Fontaine, J., Wesfreid, J. E., “Highly turbulent Couette-Taylor bubbly flow patterns”, J. Fluid Mech, vol. 422, pp. 55- 68, 2000.
[22] Hubacz, R., Wronski, S., “Horizontal Couette–Taylor flow in a two-phase gas–liquid system: flow patterns”, Exp. Thermal. Fluid Sci, vol. 28, pp. 457-466, 2004.
[23] Van den Berg, T. H., Luther, S., Lathrop, D., Lohse, D., “Drag reduction in bubbly Taylor–Couette turbulence”, Phys. Rev. Lett, vol. 94, 044501- 4, 2005.
[24] Van der Berg, T.H., van Gils, D. P. M., Lathrop, D. P., Lohse, D., “Bubbly Turbulent Drag reduction is a boundary Layer effect”, Phys. Rev. Lett, vol. 98, 084501- 4, 2007.
[25] Murai, Y., Oiwa, H., Takeda, Y., “Frictional drag reduction in bubbly Couette–Taylor flow”, Phys. Fluids, vol. 20, 034101-12, 2008.
[26] Sugiyama, K., Calzavarini, E., Lohze, D., “Microbubbly drag reduction in Taylor–Couette flow in the wavy vortex regime”. J. Fluid Mech, vol. 608, pp. 21– 41, 2008.
[27] Shen, X., Ceccio, S. L., Perlin, M., “Influence of bubble size on micro-bubble drag reduction”, Exp. Fluids, vol. 41, pp. 415− 424, 2006.
[28] Rust, A. C., Manga, M., “Bubble shapes and orientations in low Re simple shear flow”, J. Colloid Interface Sci, vol. 249, pp. 476,2002.
[29] Cazley, C. Jr., “Heat trasfer characteristics of the rotational and axial flow between cocentric cylinders”, Transactions of the ASME, vol. 80, pp. 77- 90, 1985.
[30] Dorfman, L. A., “Hydrodynamic resistance and the heat loss of rotating solid” Oliver & boy Edinburgh and London, vol. pp. 235- 239, 1963.
[31]Nouri, N., Sarreshtehdari, M. A., “An experimental study on the effect of air bubble injection on the flow induced rotational hub”, Exp. Thermal. Fluid Sci, vol. 33, pp. 386– 392, 2008.