[1] Clift, R., Grace, J., Weber, M.E., “Bubbles, Drops and Particles”, New York: Academic Press, 1978.
[2] Coutanceau, M., Defaye, J.R., “Circular cylinder wake configuration: a flow visualization survey”, Applied Mechanics Reviews, vol. 44, pp. 255–305, 1991.
[3] Williamson, C.H.K., “Vortex dynamics in the cylinder wake”, Annual Review of Fluid
Mechanics, vol. 28, pp. 477–539, 1996.
[4] Sasmal, C., Chhabra, R.P., “Laminar natural convection from a heated square cylinder immersed in power-law liquids”, J. Non-Newtonian Fluid Mech., vol. 166, pp. 811–830, 2011.
[5] Gupta, R.K., “Polymer and Composites Rheology”, second ed., New York: Marcel Dekker, 2000.
[6] Sivakumar, P., Bharti, R.P., Chhabra, R.P., “Effect of power-lawindex on critical parameters for power-law flow across an unconfined circular cylinder”, Chem. Eng. Sci., vol. 61, pp. 6035 – 6046, 2006.
[7] Chhabra, R.P., “Bubbles, Drops and Particles in Non-Newtonian Fluids”, second ed., CRC Press, Boca Raton, FL, 2006.
[8] Patnana, V.K., Bharti, R.P., Chhabra, R.P., “Two-dimensional unsteady forced convection heat transfer in power-law fluids from a cylinder”, International Journal of Heat and Mass Transfer, vol. 53, pp. 4152–4167, 2010.
[9] Bharti, R.P., Sivakumar, P., Chhabra, R.P., “Forced convection heat transfer from an elliptical cylinder to power-law fluids”, Int. J. Heat Mass Transfer, vol. 51, pp. 1838–1853, 2008.
[10] Bharti, R.P., Chhabra, R.P., Eswaran, V., “Steady forced convection heat transfer from a heated circular cylinder to power-law fluids”, Int. J. Heat Mass Transfer, vol. 50, pp. 977–990, 2007.
[11] Soares, A.A., Ferreira, J.M., Chhabra, R.P., “Flow and forced convection heat transfer in cross flow of non-Newtonian fluids over a circular cylinder”, Ind. Eng. Chem. Res., vol. 44, pp. 5815–5827, 2005.
[12] Peskin, C.S., “Flow patterns around heart valves: a digital computermethod for solving the equations of motion”, PhD thesis, Physiol, Albert Einstein Coll. Med., Univ. Mi- crofilms. Vol. 378, 1972.
[13] Kim, J., Kim, D., Choi, H., “An immersed-boundary finite-volume method for simulations of flow in complex geometries”, J. Comput. phys., vol. 171, pp. 132–150, 2001.
[14] Artoli, A.M., Sequeira, A., “Mesoscopic simulations of unsteady shear-thinning flows”, in: Lecture Notes in Comput. Sci., Berlin: Springer,pp. 78–85, 2006.
[15] Gabbanelli, S., Drazer, G., Koplik, J., “Lattice Boltzmann method for non-Newtonian (Power-Law) fluids”, Phys. Rev. E., vol. 72, pp. 046312, 2005.
[16] Aharonov, E., Rothman, D.H., “Non-Newtonian flow (through porous-media): a lattice Boltzmann method”, Geophys. Res. Lett., vol. 20, pp. 679, 1993.
[17] Chen, Y.L., Cao, X.D., Zhu, K.Q., “A gray lattice Boltzmann model for Power-Law fluid and its application in the study of slip velocity at porous interface”, J. Non-Newtonian Fluid Mech., vol. 159, pp. 130–136, 2009.
[18] Boek, E.S., Chin, J., Coveney, P.V., “Lattice Boltzmann simulation of the flow of non-Newtonian fluids in porous media”, Int. J. Mod. Phys. B., vol. 17, pp. 99–102, 2003.
[19] Kang, S.K., Hassan, Y.A., “A comparative study of direct-forcing immersed boundary-lattice Boltzmann methods for stationary complex boundaries”, Int. J. Numer. Meth. Fluids., vol. 66, pp. 1132–1158, 2011.
[20] Wu, J., Shu, C., “Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications”, Journal of Computational Physics, vol. 228, pp. 1963–1979, 2009.
[21] Kang, S.K., Hassan, Y.A., “A direct-forcing immersed boundary method for the thermal lattice Boltzmann method”, Computers & Fluids, vol. 49, pp. 36–45, 2011.
[22] Wu, J., Shu, C., Zhao, N., “Simulation of Thermal Flow Problems via a Hybrid Immersed Boundary-Lattice Boltzmann Method”, Journal of Applied Mathematics, Article ID 161484, 2012.
[23] Guo, Z., Zheng, C., Shi, B., “Discrete lattice effects on the forcing term in the lattice Boltzmann method”, Physical Review E., vol. 65, pp. 046308, 2002.
[24] Wang, C.H., Ho, J.R., “A lattice Boltzmann approach for the non-Newtonian effect in the blood flow”, Comput. Math. Appl., vol. 62, pp. 75–86, 2011.
[25] Nejat, A., Abdollahi, V., Vahidkhah, K., “Lattice Boltzmann simulation of non-Newtonian flows past confined cylinders”, J. Non-Newtonian Fluid
Mech., vol. 166, pp. 689-697, 2011.
[26] Feng, Z.G., Michaelides, E.E., “Proteus: a direct forcing method in the simulation of particulate flows”, J. Comput. Phys., vol. 202, pp. 20–51, 2005.
[27] Sui, Y., Chew, Y.T., Roy, P., Low, H.T., “A hybrid immersed-boundary and multi-block lattice Boltzmann method for simulating fluid and moving-boundaries interactions”, Int. J. Numerical Methods in Fluids, vol. 53, pp. 1727–1754, .2007.
[28] Wang, C-H, Ho, J-R., “A lattice Boltzmann approach for the non-Newtonian effect in the blood flow”, Computers and Mathematics with Applications, vol. 62, pp. 75–86, 2011.
[29] Chandra, A., Chhabra, R.P., “Flow over and forced convection heat transfer in Newtonian fluids from a semi-circular cylinder”, International Journal of Heat and Mass Transfer, vol. 54, pp. 225–241, 2011.