تحلیل کمانش ورق‌های نانوکامپوزیتی متخلخل مدرج تابعی تقویت شده با نانو تراشه‌های گرافنی در اشکال هندسی مختلف روی بستر الاستیک با روش پی‌ریتز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت، ایران

2 دانشکده فنی و مهندسی شرق گیلان، دانشگاه گیلان، رودسر، ایران

چکیده

در این مطالعه، کمانش ورق‌های نانوکامپوزیتی متخلخل مدرج تابعی تقویت شده با نانوتراشه‌های گرافنی در اشکال هندسی مستطیلی، مثلثی و بیضوی بر روی بستر الاستیک در شرایط مرزی مختلف مورد تحلیل قرار گرفته است. از تئوری ورق مرتبه اول برشی برای مدلسازی ورق و مدل وینکلر-پاسترناک برای مدلسازی بستر الاستیک استفاده می‌شود. سه نوع الگوی توزیع نانوتراشه گرافنی و سه نوع توزیع تخلخل در راستای ضخامت برای ورق نانوکامپوزیتی در نظر گرفته می‌شود. خواص مؤثر مادی با استفاده از یک مدل میکرومکانیکی بدست می‌آیند. با نوشتن فانکشنال انرژی سیستم و بکارگیری روش پی‌ریتز، اثرات ضریب تخلخل، درصد وزنی نانوتراشه‌های گرافنی، پارامترهای بستر الاستیک و همچنین نسبت طول به عرض و ضخامت ورق بر بار‌های بحرانی کمانش مورد تحلیل قرار می‌گیرد. نشان داده شده است که ورق با الگوی توزیع تخلخل غیر یکنواخت و متقارن نوع اول و چیدمان نانو تراشه‌های گرافنی نوع اول به جهت تمرکز بیشتر نانو تراشه‌های گرافن بر روی سطوح بالا و پایین ورق و افزایش سفتی ورق، دارای بیشترین بار بحرانی کمانش است. همچنین بیشترین بار بحرانی کمانش مربوط به بارگذاری برشی و کمترین مقادیر مربوط به بارگذاری دو محوری می‌باشد. با افزایش ضریب تخلخل، بار بحرانی کمانش ورق برای تمامی الگوهای توزیع نانوتراشه‌های گرافنی کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Buckling Analysis of Embedded Functionally Graded Graphene Platelet-Reinforced Porous Nanocomposite Plates with Various Shapes Using the P-Ritz Method

نویسندگان [English]

  • Mohammad Ziyafat Doust Abed 1
  • Hessam Rouhi 2
1 Faculty of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran
2 Department of Engineering Science, Faculty of Technology and Engineering, East of Guilan, University of Guilan, P.C. 44891-63157, Rudsar-Vajargah, Iran
چکیده [English]

In this study, the buckling of functionally graded graphene platelet-reinforced porous nanocomposite plates with various shapes such as rectangular, elliptical, and triangular ones embedded in an elastic medium is analyzed. To mathematically model the considered plate and elastic foundation, the first-order shear deformation plate theory, and the Winkler-Pasternak model are used, respectively. Three types of graphene nanoplatelet distribution and porous dispersion patterns through the thickness direction are considered for the nanocomposite plate. The effective material properties are obtained via a micromechanical model. By writing the energy functional of the system and using the analytical P-Ritz method, the influences of porosity coefficient, the weight fraction of graphene nanoplatelets, elastic foundation coefficients, and also the length-to-width and thickness ratios on the critical buckling loads are analyzed. It is illustrated that the plate with the non-uniform porosity distribution pattern of the first type and first type of graphene nanoplatelets due to the greater concentration of graphene nanoplatelets on the upper and lower surfaces of the plate and the increase in the stiffness of the plate, it has higher critical buckling load. Also, the maximum critical buckling load is related to shear loading and the minimum critical buckling load is related to biaxial buckling load. Also, by increasing the porosity coefficient, the critical buckling loads of the plate associated with all patterns of graphene nanoplatelets are reduced.

کلیدواژه‌ها [English]

  • Buckling of plate
  • Porous nanocomposite plates
  • Various shapes of plates
  • Elastic foundation
  • P-Ritz method
[1] P. Avouris, C. Dimitrakopoulos, Graphene: synthesis and applications, Materials today, 15(3) (2012) 86-97.
[2] S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nature nanotechnology, 4(4) (2009) 217-224.
[3] A. Tampieri, G. Celotti, S. Sprio, A. Delcogliano, S. Franzese, Porosity-graded hydroxyapatite ceramics to replace natural bone, Biomaterials, 22(11) (2001) 1365-1370.
[4] W. Pompe, H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, U. Hempel, D. Scharnweber, K. Schulte, Functionally graded materials for biomedical applications, Materials Science and Engineering: A, 362(1-2) (2003) 40-60.
[5] R. Ansari, R. Hassani, R. Gholami, H. Rouhi, Buckling and Postbuckling of Plates Made of FG-GPL-Reinforced Porous Nanocomposite with Various Shapes and Boundary Conditions, International Journal of Structural Stability and Dynamics, 21(05) (2021) 2150063.
[6] H. Bisheh, A. Alibeigloo, M. Safarpour, A. Rahimi, Three-dimensional static and free vibrational analysis of graphene reinforced composite circular/annular plate using differential quadrature method, International Journal of Applied Mechanics, 11(08) (2019) 1950073.
[7] R. Gholami, R. Ansari, Nonlinear stability and vibration of pre/post-buckled multilayer FG-GPLRPC rectangular plates, Applied Mathematical Modelling, 65 (2019) 627-660.
[8] S. Blooriyan, R. Ansari, A. Darvizeh, R. Gholami, H. Rouhi, Postbuckling analysis of functionally graded graphene platelet-reinforced polymer composite cylindrical shells using an analytical solution approach, Applied Mathematics and Mechanics, 40(7) (2019) 1001-1016.
[9] M. Song, J. Yang, S. Kitipornchai, Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets, Composites Part B: Engineering, 134 (2018) 106-113.
[10] J. Yang, D. Chen, S. Kitipornchai, Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method, Composite Structures, 193 (2018) 281-294.
[11] K. Gao, W. Gao, D. Chen, J. Yang, Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation, Composite Structures, 204 (2018) 831-846.
[12] C.T. Herakovich, Mechanics of composites: a historical review, Mechanics Research Communications, 41 (2012) 1-20.
[13] R. Szilard, Theories and applications of plate analysis: classical, numerical and engineering methods, Appl. Mech. Rev., 57(6) (2004) B32-B33.
[14] A. Ugural, Stresses in plates and shells, McGraw-Hill, 1999.
[15] J.N. Reddy, Energy principles and variational methods in applied mechanics, John Wiley & Sons, 2017.
[16] C. Wang, T.M. Aung, Plastic buckling analysis of thick plates using p-Ritz method, International Journal of Solids and Structures, 44(18-19) (2007) 6239-6255.
[17] Y. Hou, G. Wei, Y. Xiang, DSC‐Ritz method for the free vibration analysis of Mindlin plates, International Journal for Numerical Methods in Engineering, 62(2) (2005) 262-288.
[18] S.T. Smith, M.A. Bradford, D.J. Oehlers, Numerical convergence of simple and orthogonal polynomials for the unilateral plate buckling problem using the Rayleigh–Ritz method, International Journal for Numerical Methods in Engineering, 44(11) (1999) 1685-1707.
[19] B.N. Parlett, The symmetric eigenvalue problem, SIAM, 1998.
[20] D. Evans, J. Shanehchi, Implementation of an improved bisection algorithm in buckling problems, International Journal for Numerical Methods in Engineering, 19(7) (1983) 1047-1052.