[1] Y.B. Sebbane, Smart autonomous aircraft: Flight control and planning for UAV, CRC Press, 2015.
[2] R. Amin, L. Aijun, S. Band, A Review of Quadrotor UAV: Control Methodologies and Performance Evaluation, International Journal of Automation and Control, 10(2) (2015) 87-103.
[3] F. Nex, F. Remondino, UAV for 3D mapping applications: a review, Applied Geomatics, 6(1) (2014) 1-15.
[4] H. Kiaee, H. Heidari, Cooperative path planning for leader – follower formation of Multi UAV based on the minimum energy consumption for load transportation, Amirkabir Journal of Mechanical Engineering, 52(12) (2019) 3327-3340.
[5] G. Zhou, V. Ambrosia, A.J. Gasiewski, G. Bland, Foreword to the Special Issue on Unmanned Airborne Vehicle (UAV) Sensing Systems for Earth Observations, IEEE Transactions on Geoscience and Remote Sensing, 47(3) (2009) 687-689.
[6] T. Mckinnon, Agricultural Drones : What Farmers Need to Know, Agribotix, 1 (2016) 1-9.
[7] P. Garre, A. Harish, Autonomous Agricultural Pesticide Spraying UAV, IOP Conference Series: Materials Science and Engineering, 455 (2018) 12-30.
[8] R.A. Ibrahim, Liquid sloshing dynamics, Cambridge University Press, 2005.
[9] M. Grundelius, B. Bernhardsson, Control of liquid slosh in an industrial packaging machine, in: Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No. 99CH36328), IEEE, 1999, pp. 1654-1659.
[10] C. Troll, S. Tietze, J.-P. Majschak, Controlling Liquid Slosh by Applying Optimal Operating-Speed-Dependent Motion Profiles, Robotics, 9 (2020) 1-18.
[11] N. Qi, K. Dong, X. Wang, Y. Li, Spacecraft Propellant Sloshing Suppression Using Input Shaping Technique, in: 2009 International Conference on Computer Modeling and Simulation, 2009, pp. 162-166.
[12] Y. Baozeng, Z. Lemei, Hybrid Control of Liquid-Filled Spacecraft Maneuvers by Dynamic Inversion and Input Shaping, AIAA Journal, 52(3) (2014) 618-626.
[13] N. Coulter, Design of an Attitude Control System for a Spacecraft with Propellant Slosh Dynamics, Master of Sciences, Embry-Riddle Aeronautical University, Daytona Beach, Florida, 2018.
[14] Y. Zang, Z. Zhou, X. Gu, R. Jiang, L. Kong, X. He, X. Luo, Y. Lan, Design and anti-sway performance testing of pesticide tanks in spraying UAVs, International Journal of Agricultural and Biological Engineering, 12 (2019) 10-16.
[15] W. Wang, Y. Peng, Y. Zhou, Q. Zhang, Liquid sloshing in partly-filled laterally-excited cylindrical tanks equipped with multi baffles, Applied Ocean Research, 59 (2016) 543-563.
[16] I.H. Cho, J.-S. Choi, M.H. Kim, Sloshing reduction in a swaying rectangular tank by an horizontal porous baffle, Ocean Engineering, 138(February) (2017) 23-34.
[17] M.-A. Xue, J. Zheng, P. Lin, X. Yuan, Experimental study on vertical baffles of different configurations in suppressing sloshing pressure, Ocean Engineering, 136(March) (2017) 178-189.
[18] H. Qin, L. Mu, W. Tang, Z. Hu, Numerical study on structural response of anti-sloshing baffles of different configurations in a sloshing tank considering hydroelasticity, Ocean Engineering, 188 (2019) 1-22.
[19] B. Naseri Soufiani, M.A. Adli, An expanded impedance control scheme for slosh-free liquid transfer by a dual-arm cooperative robot, Journal of Vibration and Control, 27(23-24) (2020) 2793-2806.
[20] M. Hamaguchi, T. Taniguchi, Sloshing Damping Control in a Cylindrical Container on a Wheeled Mobile Robot Using Dual-Swing Active-Vibration Reduction, Journal of Robotics and Mechatronics, 21(5) (2009) 642-646.
[21] M. Reyhanoglu, J. Rubio Hervas, Nonlinear modeling and control of slosh in liquid container transfer via a PPR robot, Communications in Nonlinear Science and Numerical Simulation, 18(6) (2013) 1481-1490.
[22] B. Pridgen, K. Bai, W. Singhose, Slosh suppression by robust input shaping, in: 49th IEEE Conference on Decision and Control (CDC), 2010, pp. 2316-2321.
[23] Q. Zang, J. Huang, Z. Liang, Slosh Suppression for Infinite Modes in a Moving Liquid Container, IEEE/ASME Transactions on Mechatronics, 20(1) (2015) 217-225.
[24] W. Aribowo, T. Yamashita, K. Terashima, Integrated Trajectory Planning and Sloshing Suppression for Three-Dimensional Motion of Liquid Container Transfer Robot Arm, Journal of Robotics, 2015 (2015) 1-15.
[25] L. Moriello, L. Biagiotti, C. Melchiorri, A. Paoli, Control of liquid handling robotic systems: A feed-forward approach to suppress sloshing, in: 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2017, pp. 4286-4291.
[26] L. Biagiotti, D. Chiaravalli, L. Moriello, C. Melchiorri, A plug-in feed-forward control for sloshing suppression in robotic teleoperation tasks, in: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2018, pp. 5855-5860.
[27] X. Xie, J. Huang, Z. Liang, Using continuous function to generate shaped command for vibration reduction, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 227(6) (2013) 523-528.
[28] Q. Zang, J. Huang, Dynamics and Control of Three-Dimensional Slosh in a Moving Rectangular Liquid Container Undergoing Planar Excitations, IEEE Transactions on Industrial Electronics, 62(4) (2015) 2309-2318.
[29] H. Sayyaadi, A. Soltani, Modeling and control for cooperative transport of a slung fluid container using quadrotors, Chinese Journal of Aeronautics, 31(2) (2018) 262-272.
[30] S. Bouabdallah, Design and Control of Quadrotors With Application To Autonomous Flying, 2007.
[31] F.T. Dodge, The new" dynamic behavior of liquids in moving containers", Southwest Research Inst. San Antonio, TX, 2000.
[32] X. Xie, J. Huang, Z. Liang, Vibration reduction for flexible systems by command smoothing, Mechanical Systems and Signal Processing, 39(1-2) (2013) 461-470.
[33] S. Lee, D.K. Giri, H. Son, Modeling and control of quadrotor UAV subject to variations in center of gravity and mass, in: 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 2017, pp. 85-90.