[1] H.M.F. Rabbi, A.Z. Sahin, B.S. Yilbas, A. Al-Sharafi, Methods for the Determination of Nanofluid Optical Properties: A Review, International Journal of Thermophysics, 42(1) (2021) 1-42.
[2] E. Sani, L. Mercatelli, S. Barison, C. Pagura, F. Agresti, L. Colla, P. Sansoni, Potential of carbon nanohorn-based suspensions for solar thermal collectors, Solar Energy Materials and Solar Cells, 95(11) (2011) 2994-3000.
[3] R.A. Taylor, P.E. Phelan, T.P. Otanicar, R. Adrian, R. Prasher, Nanofluid optical property characterization: towards efficient direct absorption solar collectors, Nanoscale research letters, 6(1) (2011) 225.
[4] T.B. Gorji, A. Ranjbar, A numerical and experimental investigation on the performance of a low-flux direct absorption solar collector (DASC) using graphite, magnetite and silver nanofluids, Solar Energy, 135 (2016) 493-505.
[5] A. Menbari, A.A. Alemrajabi, Y. Ghayeb, Experimental investigation of stability and extinction coefficient of Al2O3–CuO binary nanoparticles dispersed in ethylene glycol–water mixture for low-temperature direct absorption solar collectors, Energy Conversion and Management, 108 (2016) 501-510.
[6] N. Chen, H. Ma, Y. Li, J. Cheng, C. Zhang, D. Wu, H. Zhu, Complementary optical absorption and enhanced solar thermal conversion of CuO-ATO nanofluids, Solar Energy Materials and Solar Cells, 162 (2017) 83-92.
[7] M. Mehrali, M.K. Ghatkesar, R. Pecnik, Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids, Applied energy, 224 (2018) 103-115.
[8] M. Valizade, M. Heyhat, M. Maerefat, Experimental comparison of optical properties of nanofluid and metal foam for using in direct absorption solar collectors, Solar Energy Materials and Solar Cells, 195 (2019) 71-80.
[9] J. Qu, R. Zhang, Z. Wang, Q. Wang, Photo-thermal conversion properties of hybrid CuO-MWCNT/H2O nanofluids for direct solar thermal energy harvest, Applied Thermal Engineering, 147 (2019) 390-398.
[10] W. Chen, C. Zou, X. Li, Application of large-scale prepared MWCNTs nanofluids in solar energy system as volumetric solar absorber, Solar Energy Materials and Solar Cells, 200 (2019) 109931.
[11] X. Li, G. Zeng, X. Lei, The stability, optical properties and solar-thermal conversion performance of SiC-MWCNTs hybrid nanofluids for the direct absorption solar collector (DASC) application, Solar Energy Materials and Solar Cells, 206 (2020) 110323.
[12] F. Yazdanifard, M. Ameri, R. Taylor, Investigation of using hybrid nanofluid-phase change material spectral splitter in photovoltaic/thermal system, Amirkabir Journal of Mechanical Engineering, 53(7) (2021) 19-19. (in persian)
[13] S. Mohan, A. Joseph, A. Poovathinkal, K. Akhilesh, J. Reji, J.N. Idicula, B. Vishnu, S. Sivapirakasam, Performance Evaluation of Linear Solar Collector Using Hybrid Nanofluid, in: Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering, Springer, 2021, pp. 465-472.
[14] S. Hazra, M. Michael, T. Nandi, Investigations on optical and photo-thermal conversion characteristics of BN-EG and BN/CB-EG hybrid nanofluids for applications in direct absorption solar collectors, Solar Energy Materials and Solar Cells, 230 (2021) 111245.
[15] J.P. Holman, Experimental methods for engineers, (1966).
[16] S. Choudhary, A. Sachdeva, P. Kumar, Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector, Renewable Energy, 147 (2020) 1801-1814.
[17] A. International, Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface, (2012).
[18] Y.A. Cengel, M.A. Boles, Thermodynamics: An Engineering Approach 6th Editon (SI Units), The McGraw-Hill Companies, Inc., New York, 2007.
[19] X. Zhang, H. Gu, M. Fujii, Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles, Experimental Thermal and Fluid Science, 31(6) (2007) 593-599.