بررسی فرآیند ذوب دوبعدی درون محیط متخلخل با اعمال شرط عدم تعادل دمای محلی در حضور شرط مرزی سینوسی با روش بولتزمن شبکه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 زنجان-مهندسی- گروه مهندسی مکانیک

2 فارغ التحصیل کارشناسی ارشد، دانشکده مهندسی، دانشگاه زنجان، زنجان، ایران

چکیده

مقاله حاضر، به بررسی اختلاف دمای محلی، میان ماده تغییر فاز دهنده و محیط متخلخل دوبعدی طی فرآیند ذوب با نظر گرفتن جابجایی طبیعی و شرط مرزی سینوسی، می‌پردازد. بدین منظور از تابع توزیع چگالی، برای حل معادله تکانه و از دو تابع توزیع جداگانه برای حل معادلات انرژی جهت محاسبه اختلاف دمای محلی و کسر مایع ماده تغییر فاز دهنده، استفاده شده است. بررسی تأثیر پارامترهایی نظیر دامنه و فرکانس نوسان و عدد اسپارو بر درصد اختلاف دمای محلی و مقایسه کسر مایع در دو حالت حضور و عدم حضور جابجایی طبیعی، از اهداف این مقاله است. نتایج نشان می‌دهد که با افزایش فرکانس نوسان از 1 به 3، درصد اختلاف دمای محلی از 41/44 % به 67/53% افزایش یافته و با افزایش دامنه نوسان از 1 به 3، درصد اختلاف دمای محلی از 41/44 % به 20/56 % کاهش می‌یابد. همچنین، با افزایش عدد اسپارو از 322 به 6000، درصد اختلاف دمای محلی از 41/44 % به 4/21 %  کاهش می‌یابد. از سوی دیگر، مشاهده می‌شود که با تغییر فرکانس نوسان، کسر مایع نسبت به شرایط رسانش محض تغییر چندانی نمی‌کند؛ حال آنکه با افزایش دامنه نوسان، درصد انحراف کسر مایع نسبت به رسانش محض، افزایش می‌یابد.
.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of 2D Melting Process within a Porous Medium Considering Local Thermal Nonequilibrium Condition in the Presence of Sinusoidal Boundary Condition by Lattice Boltzmann Method

نویسندگان [English]

  • Taghilou Taghilou 1
  • Seyed Alireza Safavi 2
1 زنجان-مهندسی- گروه مهندسی مکانیک
2 Master graduate, Faculty of Engineering, University of Zanjan, Zanjan, Iran
چکیده [English]

This paper investigates the local temperature difference between the phase change material and porous medium during the two-dimensional melting process by considering natural convection and applying sinusoidal boundary condition. Hence, the density distribution function is used to solve momentum equations and two separate distribution functions are used to solve energy equations to calculate the local temperature difference and liquid fraction of the phase change material. Also, the effect of parameters such as amplitude and frequency of oscillation and Sparrow number on the percentage of local temperature difference and comparison of liquid fraction in the presence and absence of natural convection, are studied. Results show that with increasing frequency from 1 to 3, the percentage of local temperature difference increased from 41.44% to 67.53%, and with increasing oscillation amplitude from 1 to 3, the percentage of local temperature difference is reduced from 41.44% to 20.56%. Also, by increasing the Sparrow number from 322 to 6000, the percentage of local temperature difference decreases from 41.44% to 4.21%. Also, it is observed that by changing oscillation frequency, liquid fraction does not change much compared to the conditions of pure conduction; however, as the amplitude of oscillation increases, the percentage of deviation of liquid fraction from the pure conduction increases.

کلیدواژه‌ها [English]

  • Melting process
  • Porous medium
  • Local temperature difference
  • Sinusoidal boundary temperature
  • Lattice Boltzmann method
[1] A. Kumar, R. Kothari, S.K. Sahu, S.I. Kundalwal, M.P. Paulraj, Numerical investigation of cross plate fin heat sink integrated with phase change material for cooling application of portable electronic devices, International Journal of Energy Research, 45(6) (2021) 8666-8683.
[2] M. Taghilou, E. Khavasi, Thermal behavior of a PCM filled heat sink: The contrast between ambient heat convection and heat thermal storage, Applied Thermal Engineering, 174 (2020) 115273.
[3] P.M. Kumar, D. Sudarvizhi, P.M.J. Stalin, A. Aarif, R. Abhinandhana, A. Renuprasanth, V. Sathya, N.T. Ezhilan, Thermal characteristics analysis of a phase change material under the influence of nanoparticles, Materials Today: Proceedings, 45 (2021) 7876-7880.
[4] P. Talebizadeh Sardari, G.S. Walker, M. Gillott, D. Grant, D. Giddings, Numerical modelling of phase change material melting process embedded in porous media: Effect of heat storage size, Proceedings of the institution of mechanical engineers, Part A: journal of power and energy, 234(3) (2020) 365-383.
[5] M. Kaviany, Thermal nonequilibrium between fluid and solid phases, in:  Principles of Heat Transfer in Porous Media, Springer, 1995, pp. 391-425.
[6] W. Minkowycz, A. Haji-Sheikh, K. Vafai, On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the Sparrow number, International journal of heat and mass transfer, 42(18) (1999) 3373-3385.
[7] A. Nakayama, F. Kuwahara, M. Sugiyama, G. Xu, A two-energy equation model for conduction and convection in porous media, International journal of heat and mass transfer, 44(22) (2001) 4375-4379.
[8] X. Zhang, G. Su, J. Lin, A. Liu, C. Wang, Y. Zhuang, Three-dimensional numerical investigation on melting performance of phase change material composited with copper foam in local thermal non-equilibrium containing an internal heater, International Journal of Heat and Mass Transfer, 170 (2021) 121021.
[9] M.C. Sukop, D.T. Thorne, LBM for macroscopic porous media, Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers,  (2006) 145-155.
[10] D. Gao, Z. Chen, L. Chen, A thermal lattice Boltzmann model for natural convection in porous media under local thermal non-equilibrium conditions, International Journal of Heat and Mass Transfer, 70 (2014) 979-989.
[11] D. Gao, F.-B. Tian, Z. Chen, D. Zhang, An improved lattice Boltzmann method for solid-liquid phase change in porous media under local thermal non-equilibrium conditions, International Journal of Heat and Mass Transfer, 110 (2017) 58-62.
[12] S. Savović, J. Caldwell, Finite difference solution of one-dimensional Stefan problem with periodic boundary conditions, International journal of heat and mass transfer, 46(15) (2003) 2911-2916.
[13] C. Ho, C. Chu, Periodic melting within a square enclosure with an oscillatory surface temperature, International journal of heat and mass transfer, 36(3) (1993) 725-733.
[14] H.M. Sadeghi, M. Babayan, A. Chamkha, Investigation of using multi-layer PCMs in the tubular heat exchanger with periodic heat transfer boundary condition, International Journal of Heat and Mass Transfer, 147 (2020) 118970.
[15] A. Kumar, A Stefan problem with moving phase change material, variable thermal conductivity and periodic boundary condition, Applied Mathematics and Computation, 386 (2020) 125490.
[16] N. Sadoun, E.-K. Si-Ahmed, P. Colinet, On the refined integral method for the one-phase Stefan problem with time-dependent boundary conditions, Applied mathematical modelling, 30(6) (2006) 531-544.
[17] M. Taghilou, A.M. Sefidan, A. Sojoudi, S.C. Saha, Solid-liquid phase change investigation through a double pipe heat exchanger dealing with time-dependent boundary conditions, Applied Thermal Engineering, 128 (2018) 725-736.
[18] M. Taghilou, F. Talati, Analytical and numerical analysis of PCM solidification inside a rectangular finned container with time-dependent boundary condition, International Journal of Thermal Sciences, 133 (2018) 69-81.
[19] M. Faden, S. Höhlein, J. Wanner, A. König-Haagen, D. Brüggemann, Review of Thermophysical Property Data of Octadecane for Phase-Change Studies, Materials, 12(18) (2019) 2974.
[20] X. He, S. Chen, G.D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit, Journal of computational physics, 146(1) (1998) 282-300.