[1] M.S. Aghareb Parast, H. Aroo, M. Azadi, M. Azadi, Investigation on effects of lubrication and heat treatment on frerring fatigue behavior of aluminum-matrix nano-composite, Modares Mechanical Engineering, 21(8) (2021) 527-540 (in Persian).
[2] M.S. Aghareb Parast, M.H. Haji Esmaili, M. Azadi, Comparing bending fatigue and fretting fatigue properties in aluminum-silicon alloy under working conditions of engine piston-ring system, Journal of Solid and Fluid Mechanics, 11(2) (2021) 157-174 (in Persian).
[3] A.D. Ahmed, E. Sarhan, M. Zalnezhad, M. Hamdi, The influence of higher surface hardness on fretting fatigue life of hard anodized aerospace AL7075-T6 alloy, Materials Science and Engineering A, 560 (2013) 377-387.
[4] G.H. Majzoobi, J. Nemati, A.J. Novin Rooz, G.H. Farrahi, Modification of fretting fatigue behavior of AL7075-T6 alloy by the application of titanium coating using IBED technique and shot peening, Tribology International, 42 (2009) 121-129.
[5] G.H. Majzoobi, K. Azadikhah, J. Nemati, The effects of deep rolling and shot peening on fretting fatigue resistance of Aluminum-7075-T6, Materials Science and Engineering A, 516 (2009) 235-247.
[6] C. Santus, Fretting fatigue of aluminum alloy in contact with steel in oil drill pipe connections, modeling to interpret test results, International Journal of Fatigue, 30 (2008) 677-688.
[7] M.P. Szolwinski, T.N. Farris, Observation, analysis and prediction of fretting fatigue in 2024-T351 aluminum alloy, Wear, 221 (1998) 24-36.
[8] S.R. Shinde, D.W. Hoeppner, Fretting fatigue behavior in 7075-T6 aluminum alloy, Wear, 261 (2006) 426-434.
[9] D.W. Hoeppner, G.L. Goss, Metallographic analysis of fretting fatigue damage in Ti-6A1-4V MA and 7075-T6 aluminum, Wear, 27 (1974) 175-187.
[10] F. Kamali, M. Azadi, An evaluation of tribological and mechanical properties of Al-Si-Cu alloy with nano-clay particles reinforcement, Journal of Mechanical Engineering Science, 233(19-20) (2019) 7062-7076.
[11] A.E. Nassar, E.E. Nassar, Properties of aluminum matrix Nano composites prepared by powder metallurgy processing, Journal of King Saud University - Engineering Sciences, 29 (2017) 295-299.
[12] M. Azadi, M. Zolfaghari, S. Rezanezhad, M. Azadi, Effects of SiO2 nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods, Applied Physics A: Materials Science and Processing, 124 (5) (2018) 377.
[13] M. Sameezadeh, M. Emamy, H. Farhangi, Effects of particulate reinforcement and heat treatment on the hardness and wear properties of AA 2024-MoSi2 nanocomposites, Materials and Design, 32 (2011) 2157-2164.
[14] M. Azadi, S. Rezanezhad, M. Zolfaghari, M. Azadi, Investigation of tribological and compressive behaviors of Al/SiO2 nanocomposites after T6 heat treatment, Sadhana, 45(1) (2020) 45-28.
[15] M. Azadi, M. Zolfaghari, S. Rezanezhad, M. Azadi, Characterization of high-cycle bending fatigue behaviors for piston aluminum matrix SiO2 nano-composites in comparison with aluminum-silicon alloys, International Journal of Metalcasting, 15(1) (2021) 152-168.
[16] P.R.M. Raju, S. Rajesh, K.S.R. Raju, V.R. Raju, Evaluation of fatigue life of Al2024/Al2O3 particulate nano composite fabricated using stir casting technique, Materials Today: Proceedings, 4(2, Part A) (2017) 3188-3196.
[17] R. Senthilkumar, N. Arunkumar, M. Manzoor Hussian, A comparative study on low cycle fatigue behaviour of nano and micro Al2O3 reinforced AA2014 particulate hybrid composites, Results in Physics, 5 (2015) 273-280.
[18] K. Rashnoo, M.J. Sharifi, M. Azadi, M. Azadi, Influences of reinforcement and displacement rate on microstructure, mechanical properties and fracture behaviors of cylinder-head aluminum alloy, Materials Chemistry and Physics, 16(6) (2020) 27-30.
[19] P. Sahandi Zangabad, F. Khodabakhshi, A. Simchi, A.H. Kokabi, Fatigue fracture of friction-stir processed Al-Al3Ti-MgO hybrid nanocomposites, International Journal of Fatigue, 87 (2016) 266-278.
[20] D. Yang, Y. Liu, S. Li, L. Ma, C. Liu, J. Yi, Effects of aging temperature on microstructure and high cycle fatigue performance of 7075 aluminum alloy, Journal of Wuhan University of Technology-Mater, 32(3) (2017) 677-684.
[21] M. Azadi, H. Bahmanabadi, F. Gruen, G. Winter. Evaluation of tensile and low-cycle fatigue properties at elevated temperatures in piston aluminum-silicon alloys with and without nano-clay-particles and heat treatment. Materials Science and Engineering: A, 788 (2020) 139497.
[22] M. Sharifi, M. Azadi, M. Azadi, Fabrication of heat-treated nano-clay-composite for improving high-cycle fatigue properties of AlSiCu aluminum alloy under stress-controlled fully-reversed bending loads, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(19) (2020) 4143-4160.
[23] ASM Metals Handbook, Volume 2: Properties and Selections - Nonferrous, ASM International, 1990.
[24] ASM Metals Handbook, Volume 2: Properties and Selections - Nonferrous, ASM International, 1990.
[25] American Society for Testing and Materials: ASTM D2789, Standard Test Method for Hydrocarbon Types in Low Olefinic Gasoline by Mass Spectrometry, ASTM International, (2016).
[26] S. Kores, B. Tonn, H. Zak, Aluminum alloys for cylinder heads, Materials and Geoenvironment, 3(55) (2008) 307-317.
[27] Metallic materials-rotating bar bending fatigue testing, Standard No. ISO-1143, ISO International Standard, (2010).
[28] S. Rezanejad, M. Azadi, M. Azadi, Influence of heat treatment on high‑cycle fatigue and fracture behaviors of piston aluminum alloy under fully‑reversed cyclic bending, Metals and Materials International, 27 (2021) 860-870.
[29] F. Grosselle, Development of innovative applications in non-ferrous metals, PhD Thesis, University of Padua, Italy, 2010.
[30] Zhang G, Zhang J, Li B, Cai W, Double-stage hardening behavior and fracture characteristics of a heavily alloyed Al–Si piston alloy during low-cycle fatigue loading, Materials Science and Engineering: A, 561 (2013) 26-33.
[31] Z. Li, N. Limodin, A. Tandjaoui, P. Quaegebeur, J.F. Witz, D. Balloy, Influence of control on the damage mechanism in A319 aluminum alloy: Tensile tests and digital image correlation, Engineering Fracture Mechanics, 183 (2017) 94-108.