[1] S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications, International journal of hydrogen energy, 35(17) (2010) 9349-9384.
[2] H. Wang, M.A. Sweikart, J.A. Turner, Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells, Journal of Power Sources, 115(2) (2003) 243-251.
[3] Y. Hung, H. Tawfik, D. Mahajan, Durability and characterization studies of polymer electrolyte membrane fuel cell’s coated aluminum bipolar plates and membrane electrode assembly, Journal of Power Sources, 186(1) (2009) 123-127.
[4] S. Simaafrookhteh, M. Khorshidian, M. Momenifar, Fabrication of multi-filler thermoset-based composite bipolar plates for PEMFCs applications: Molding defects and properties characterizations, International Journal of Hydrogen Energy, 45(27) (2020) 14119-14132.
[5] M. Jain, M.K. Pradhan, Morphology and mechanical properties of sisal fiber and nano cellulose green rubber composite: A comparative study, International Journal of Plastics Technology, 20(2) (2016) 378-400.
[6] Y. Rostamiyan, A. Fereidoon, M. Rezaeiashtiyani, A.H. Mashhadzadeh, A. Salmankhani, Experimental and optimizing flexural strength of epoxy-based nanocomposite: effect of using nano silica and nano clay by using response surface design methodology, Materials & Design, 69 (2015) 96-104.
[7] J. Hu, 3-D fibrous assemblies: Properties, applications and modelling of three-dimensional textile structures, Elsevier, 2008.
[8] N. Shaari, D. Kuppusamy, N.S. Shaari, N. Sapiai, M. Adnan, Effects of Silane Treatment on the Impact and Tensile Properties of Textile Waste Fiber Polymer Composite, Manufacturing and Materials Towards Industry 4.0, (2021) 687-698.
[9] I. Astm, Standard test method for water absorption of plastics, ASTM D570-98, (2010).
[10] I. Astm, Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM D790-07, (2007).
[11] S. Astm, Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM D790, Annual book of ASTM Standards, (1997).
[12] B.E. Allen, Characterization of reclaimed carbon fibers and their integration into new thermoset polymer matrices via existing composite fabrication techniques, North Carolina State University, 2008.
[13] N.A.M. Radzuan, A.B. Sulong, M.R. Somalu, A.T. Abdullah, T. Husaini, R.E. Rosli, E.H. Majlan, M.I. Rosli, Fibre orientation effect on polypropylene/milled carbon fiber composites in the presence of carbon nanotubes or graphene as a secondary filler: Application on PEM fuel cell bipolar plate, international journal of hydrogen energy, 44(58) (2019) 30618-30626.
[14] B. Avasarala, P. Haldar, Effect of surface roughness of composite bipolar plates on the contact resistance of a proton exchange membrane fuel cell, Journal of Power Sources, 188(1) (2009) 225-229.
[15] P.J. Hamilton, B.G. Pollet, Polymer electrolyte membrane fuel cell (PEMFC) flow field plate: design, materials and characterisation, Fuel cells, 10(4) (2010) 489-509.
[16] E.L. Miller, S.T. Thompson, K. Randolph, Z. Hulvey, N. Rustagi, S. Satyapal, US Department of Energy hydrogen and fuel cell technologies perspectives, MRS Bulletin, 45(1) (2020) 57-64.
[17] R.B. Mathur, S.R. Dhakate, D.K. Gupta, T.L. Dhami, R.K. Aggarwal, Effect of different carbon fillers on the properties of graphite composite bipolar plate, Journal of Materials Processing Technology, 203(1-3) (2008) 184-192.
[18] P.H. Maheshwari, R.B. Mathur, T.L. Dhami, Fabrication of high strength and a low weight composite bipolar plate for fuel cell applications, Journal of Power Sources, 173(1) (2007) 394-403.
[19] J. Norley, Graphite–Based Bipolar Plates for PEM Motive Fuel Cell Applications, in.
[20] W. Chen, Y. Liu, Q. Xin, Evaluation of a compression molded composite bipolar plate for direct methanol fuel cell, International journal of hydrogen energy, 35(8) (2010) 3783-3788.
[21] R. Taherian, M.J. Hadianfard, A.N. Golikand, Manufacture of a polymer-based carbon nanocomposite as bipolar plate of proton exchange membrane fuel cells, Materials & Design, 49 (2013) 242-251.
[22] P. Liang, D. Qiu, L. Peng, P. Yi, X. Lai, J. Ni, Contact resistance prediction of proton exchange membrane fuel cell considering fabrication characteristics of metallic bipolar plates, Energy Conversion and Management, 169 (2018) 334-344.
[23] S. Lædre, O.E. Kongstein, A. Oedegaard, F. Seland, H. Karoliussen, Measuring in situ interfacial contact resistance in a proton exchange membrane fuel cell, Journal of The Electrochemical Society, 166(13) (2019) F853.
[24] A. Vikram, P.R. Chowdhury, R.K. Phillips, M. Hoorfar, Measurement of effective bulk and contact resistance of gas diffusion layer under inhomogeneous compression–Part I: Electrical conductivity, Journal of Power Sources, 320 (2016) 274-285.
[25] M. Mohammadzadeh Rad, S. Saber-Samandari, M. Sadighi, L. Tayebi, M. Mohammadi Aghdam, A. Khandan, Macro-and micromechanical modelling of HA-Elastin scaffold fabricated using freeze drying technique, Journal of Nanoanalysis, 8(1) (2021) 17-31.
[26] M.K. Mohammed, A.I. Al-Hadithi, M.H. Mohammed, Production and optimization of eco-efficient self compacting concrete SCC with limestone and PET, Construction and Building Materials, 197 (2019) 734-746.
[27] N. Li, H.B. Liu, H.T. Wu, The deformation analysis and optimization of the injection molded parts based on the moldflow and minitab software, Advanced Materials Research, 753 (2013) 1180-1183.