[1] M. Enayatrad, M. Mirzaei, H. Salehiniya, M.R. Karimirad, S. Vaziri, F. Mansouri, A. Moudi, Trends in Incidence of Common Cancers in Iran, Asian Pacific Journal of Cancer Prevention, 17 (2016) 39-42.
[2] R.K. Jain, Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy, Science, 307 (2005) 58-62.
[3] F. Moradi Kashkooli, M. Soltani, M.H. Hamedi, Image-Based Numerical Model for Drug Delivery to Solid Tumors, Amirkabir Journal of Mechanical Engineering, 53 (2021) 5-5 (in Persian).
[4] M. Rezaeian, M. Soltani, Computational Modeling of Intraperitoneal Drug Delivery for the Treatment of Peritoneal Carcinomatosis, Amirkabir Journal of Mechanical Engineering, 54 (2022) 11-11 (in Persian).
[5] F. Moradi Kashkooli, M. Rezaeian, M. Soltani, Drug Delivery through Nanoparticles in Solid Tumors: A Mechanistic Understanding, Nanomedicine, Article in Press (2022).
[6] M. Hadjicharalambous, P.A. Wijeratne, V. Vavourakis, From Tumour Perfusion to Drug Delivery and Clinical Translation of in Silico Cancer Models, Methods, 185 (2021) 82-93.
[7] R.K. Jain, L.T. Baxter, Mechanisms of Heterogeneous Distribution of Monoclonal Antibodies and other Macromolecules in Tumors: Significance of Elevated Interstitial Pressure, Cancer Research, 48 (1988) 7022-7032.
[8] L.T. Baxter, R.K. Jain, Transport of Fluid and Macromolecules in Tumors I. Role of Interstitial Pressure and Convection, Microvascular Research, 37 (1989) 77-104.
[9] L.T. Baxter, R.K. Jain, Transport of Fluid and Macromolecules in Tumors II. Role of Heterogeneous Perfusion and Lymphatics, Microvascular Research, 40 (1990) 246-263.
[10] L.T. Baxter, R.K. Jain, Transport of Fluid and Macromolecules in Tumors III Role of Binding and Metabolism, Microvascular Research, 41 (1991) 5-23.
[11] M. Soltani, P. Chen, Numerical Modeling of Fluid Flow in Solid Tumors, PLoS ONE, 6 (2011) e20344.
[12] M. Soltani, P. Chen, Effect of Tumor Shape and Size on Drug Delivery to Solid Tumors, Journal of Biological Engineering, 6 (2012) 4.
[13] M.F. Flessner, R.L. Dedrick, J.S. Schultz, A Distributed Model of Peritoneal-Plasma Transport: Theoretical Considerations, American Journal of Physiology, 246 (1984) 597-607.
[14] M.F. Flessner, J.D. Fenstermacher, R.L. Dedrick, R.G. Blasberg, A Distributed Model of Peritoneal-Plasma Transport: Tissue Concentration Gradients, American Journal of Physiology, 248 (1985) 425-435.
[15] M. Sefidgar, M. Soltani, K. Raahemifar, H. Bazmara, S.M. Mousavi Nayinian, M. Bazargan, Effect of Tumor Shape, Size, and Tissue Transport Properties on Drug Delivery to Solid Tumors, Journal of Biological Engineering, 8 (2014) 12.
[16] M. Steuperaert, G.F. D’Urso Labate, C. Debbaut, O. De Wever, C. Vanhove, Mathematical Modeling of Intraperitoneal Drug Delivery: Simulation of Drug Distribution in a Single Tumor Nodule, Drug Delivery, 24 (2017) 491-501.
[17] M. Sefidgar, M. Soltani, K. Raahemifar, M. Sadeghi, H. Bazmara, M. Bazargan, S.M. Mousavi Nayinian, Numerical Modeling of Drug Delivery in a Dynamic Solid Tumor Microvasculature, Microvascular Research, 99 (2015) 43-56.
[18] F. Moradi Kashkooli, M. Soltani, M. Rezaeian, E. Taatizadeh, M.H. Hamedi, Image-Based Spatio-Temporal Model of Drug Delivery in a Heterogeneous Vasculature of a Solid Tumor-Computational Approach, Microvascular Research, 123 (2019) 111-124.
[19] F. Moradi Kashkooli, M. Soltani, Evaluation of Solid Tumor Response to Sequential Treatment Cycles via a New Computational Hybrid Approach, Scientific Reports, 11 (2021) 21475.
[20] M. Mohammadi, M. Sefidgar, Modeling of Drug Delivery to Solid Tumor with a Remodeled Dynamic Capillary Network Induced by Two Parent Vessels, Modares Mechanical Engineering, 19 (2019) 2877-2886 (in Persian).
[21] G.M. Tozer, Measuring Tumour Vascular Response to Antivascular and Antiangiogenic Drugs, The British Journal of Radiology, 76 (2003) 23-35.
[22] R.K. Jain, Normalizing Tumor Vasculature with Anti-angiogenic Therapy: A New paradigm for Combination Therapy, Nature Medicine 7(2001) 987–989.
[23] D. Fukumura, R.K. Jain, Tumor Microvasculature and Microenvironment: Targets for Anti-Angiogenesis and Normalization, Microvascular Research, 74 (2007) 72-84.
[24] L. Pian, Z. Chen, C. Jing, Z. Ruiguang, R. Jinghua, H. Yuhui, Z. Fang, L. Zhenyu, W. Gang, Combinational Therapy of Interferon-α and Chemotherapy Normalizes Tumor Vasculature by Regulating Pericytes Including the Novel Marker RGS5 in Melanoma, Journal of Immunotherapy, 34 (2011) 320-326.
[25] R. Grossman, H. Brastianos, J.O. Blakeley, A. Mangraviti, B. Lal, P. Zadnik, L. Hwang, R.T. Wicks, R.C. Goodwin, H. Brem, B. Tyler, Combination of Anti-VEGF Therapy and Temozolomide in Two Experimental Human Glioma Models, Journal of Neuro-Oncology, 116 (2014) 59-65.
[26] R.K. Jain, R.T. Tong, L.L. Munn, Effect of Vascular Normalization by Antiangiogenic Therapy on Interstitial Hypertension, Peritumor Edema, and Lymphatic Metastasis: Insights from a Mathematical Model, Cancer Research, 67 (2007) 2729-2735.
[27] M. Mohammadi, C. Aghanajafi, M. Soltani, (2021) Numerical Modelling of Drug Delivery in an Isolated Solid Tumor under the Influence of Vascular Normalization. In: Kilgour, D. M., Kunze, H., Makarov, R., Melnik, R. & Wang, X. Recent Developments in Mathematical, Statistical, and Computational Sciences. AMMCS 2019, Springer Proceedings in Mathematics & Statistics, vol 343. Springer, Cham.
[28] T. Stylianopoulos, R.K. Jain, Combining Two Strategies to Improve Perfusion and Drug Delivery in Solid Tumors, Proceedings of the National Academy of Science, 110 (2013) 18632-18637.
[29] A. Moath, Y.X. Xiao, The Influence of Tumour Vasculature on Fluid Flow in Solid Tumours: A Mathematical Modelling Study., Biophysics Reports, 7 (2021) 35-54.
[30] E.P. Salathe, K.-N. An, A Mathematical Analysis of Fluid Movement across Capillary Walls, Microvascular Research, 11 (1976) 1-23.
[31] E.A. Swabb, J. Wei, P.M. Gullino, Diffusion and Convection in Normal and Neoplastic Tissues, Cancer Research, 34 (1974) 2814–2822.
[32] C.S. Patlak, D.A. Goldstein, J.F. Hoffman, The Flow of Solute and Solvent across a Two-Membrane System, Journal of Theoretical Biology, 5 (1963) 426-442.
[33] L.I. Kolitsi, S.G. Yiantsios, Transport of Nanoparticles in Magnetic Targeting: Comparison of Magnetic, Diffusive and Convective Forces and Fluxes in the Microvasculature, through Vascular Pores and across the Interstitium, Microvascular Research, 130 (2020) 104007.
[34] J. Lyu, J. Cao, P. Zhang, Y. Liu, H. Cheng, Coupled Hybrid Continuum-Discrete Model of Tumor Angiogenesis and Growth, PLoS ONE, 11 (2016) e0163173.
[35] F. Moradi Kashkooli, M. Soltani, M.M. Momeni, Computational Modeling of Drug Delivery to Solid Tumors: A Pilot Study Based on a Real Image, Journal of Drug Delivery Science and Technology, 62 (2021) 102347.
[36] B. Rippe, B. Haraldsson, Capillary Permeability in Rat Hindquarters as Determined by Estimations of Capillary Reflection Coefficients, Acta Physiologica Scandinavica, 127 (1986) 289-303.
[37] C.G. Willett, Y. Boucher, E.d. Tomaso, D.G. Duda, L.L. Munn, R.T. Tong, D.C. Chung, D.V. Sahani, S.P. Kalva, S.V. Kozin, M. Mino, K.S. Cohen, D.T. Scadden, A.C. Hartford, A.J. Fischman, J.W. Clark, D.P. Ryan, A.X. Zhu, L.S. Blaszkowsky, H.X. Chen, P.C. Shellito, G.Y. Lauwers, R.K. Jain, Direct Evidence that the VEGF-Specific Antibody Bevacizumab Has Antivascular Effects in Human Rectal Cancer, Nature Medicine, 10 (2004) 145–147.
[38] K. Ballard, W. Perl, Osmotic Reflection Coefficients of Canine Subcutaneous Adipose Tissue Endothelium, Microvascular Research, 16 (1978) 224-236.
[39] J.L. Anderson, D.M. Malone, Mechanism of Osmotic Flow in Porous Membranes, Biophysical Journal, 14 (1974) 957-982.
[40] M. Mohammadi, C. Aghanajafi, M. Soltani, K. Raahemifar, Numerical Investigation on the Anti-Angiogenic Therapy-Induced Normalization in Solid Tumors, Pharmaceutics, 14 (2022) 363.
[41] D.G. Covell, J. Barbet, O.D. Holton, C.D.V. Black, R.J. Parker, J.N. Weinstein, Pharmacokinetics of Monoclonal Immunoglobulin , , and , Cancer Research, 46 (1986) 3969-3978.
[42] S.R. Plotkin, A.O. Stemmer-Rachamimov, F.G. Barker, C. Halpin, T.P. Padera, A. Tyrrell, A.G. Sorensen, R.K. Jain, E.d. Tomaso, Hearing Improvement after Bevacizumab in Patients with Neurofibromatosis Type 2, The New England Journal of Medicine, 361 (2009) 358-367.
[43] Y. Boucher, L.T. Baxter, R.K. Jain, Interstitial Pressure Gradients in Tissue-Isolated and Subcutaneous Tumors: Implications for Therapy, Cancer Research, 50 (1990) 4478-4484.
[44] R.K. Jain, Transport of Molecules in the Tumor Interstitium: A Review, Cancer Research, 47 (1987) 3039-3051.
[45] H. Wiig, E. Tveit, R. Hultborn, R.K. Reed, L. Weiss, Interstitial Fluid Pressure in DMBA-Induced rat Mammary Tumours, Scandinavian Journal of Clinical and Laboratory Investigation, 42 (1982) 159-164.
[46] Y. Boucher, R.K. Jain, Microvascular Pressure is the Principal Driving Force for Interstitial Hypertension in Solid Tumors: Implications for Vascular Collapse, Cancer Research, 52 (1992) 5110–5114.
[47] L. Eikenes, Ø.S. Bruland, C. Brekken, C.d. Lange Davies, Collagenase Increases the Transcapillary Pressure Gradient and Improves the Uptake and Distribution of Monoclonal Antibodies in Human Osteosarcoma Xenografts, Cancer Research, 64 (2004) 4768-4773.
[48] Y. Fan, W. Du, B. He, F. Fu, L. Yuan, H. Wu, W. Dai, H. Zhang, X. Wang, J. Wang, X. Zhang, Q. Zhang, The Reduction of Tumor Interstitial Fluid Pressure by Liposomal Imatinib and its Effect on Combination Therapy with Liposomal Doxorubicin, Biomaterials, 34 (2013) 2277-2288.
[49] C.-G. Lee, M. Heijn, E.d. Tomaso, G. Griffon-Etienne, M. Ancukiewicz, C. Koike, K.R. Park, N. Ferrara, R.K. Jain, H.D. Suit, Y. Boucher, Anti-Vascular Endothelial Growth Factor Treatment Augments Tumor Radiation Response under Normoxic or Hypoxic Conditions, Cancer Research, 60 (2000) 5565-5570.
[50] J.R. Bourne, Mixing in Single-Phase Chemical Reactors, in: Mixing in the Process Industries, Butterworth-Heinemann, 1992.
[51] T. Webb, Vascular Normalization: Study Examines How Antiangiogenesis Therapies Work, Journal of the National Cancer Institute, 97 (2005) 336-337.
[52] Y.-J. Ho, C.-K. Yeh, Combination of Anti-Angiogenesis Treatment and Chemotherapy in Solid Tumors by Using Drug-Loaded Nanodroplets Vaporization, in: IEEE International Ultrasonics Symposium (IUS), 2016, pp. 1-4.