[1] I. Esen, C. Özarpa, M.A. Eltaher, Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment, Composite Structures, 261 (2021) 113552.
[2] R. Jahanghiry, R. Yahyazadeh, N. Sharafkhani, V.A. Maleki, Stability analysis of FGM microgripper subjected to nonlinear electrostatic and temperature variation loadings, Science and Engineering of Composite Materials, 23(2) (2016) 199-207.
[3] Y.D. Hu, H.R. Xu, Nonlinear natural vibration of a circular plate in the non-uniform induced magnetic field, Archive of Applied Mechanics, 91(6) (2021) 1-21.
[4] T. Takagi, J. Tani, Y. Matsubara, I. Mogi, Dynamic behavior of fusion structural components under strong magnetic fields, Fusion engineering and design, 27 (1995) 481-489.
[5] A. Ghobadi, Y.T. Beni, H. Golestanian, Size dependent thermo-electro-mechanical nonlinear bending analysis of flexoelectric nano-plate in the presence of magnetic field, International Journal of Mechanical Sciences, 152 (2019) 118-137.
[6] Z. Su, G. Jin, T. Ye, Electro-mechanical vibration characteristics of functionally graded piezoelectric plates with general boundary conditions, International Journal of Mechanical Sciences, 138 (2018) 42-53.
[7] J. Li, Y. Hu, Principal and internal resonance of rectangular conductive thin plate in transverse magnetic field, Theoretical and Applied Mechanics Letters, 8(4) (2018) 257-266.
[8] Z. Su, G. Jin, T. Ye, Electro-mechanical vibration characteristics of functionally graded piezoelectric plates with general boundary conditions, International Journal of Mechanical Sciences, 138 (2018) 42-53.
[9] F. Moon, Y. Pao, Vibration and dynamic instability of a beam-plate in a transverse magnetic field, Journal of Applied Mechanics, 36(1) (1969) 92-100.
[10] P. Yih-Hsing, Y. Chau-Shioung, A linear theory for soft ferromagnetic elastic solids, International Journal of Engineering Science, 11(4) (1973) 415-436.
[11] W.F. Brown, Magnetoelastic interactions, Springer, (1966).
[12] A.C. Eringen, Theory of electromagnetic elastic plates, International Journal of Engineering Science, 27(4) (1989) 363-375.
[13] A.C. Eringen, G.A. Maugin, Electrodynamics of continua I: foundations and solid media, Springer Science & Business Media, (2012).
[14] Y. H. Zhou, X. Zheng, A general expression of magnetic force for soft ferromagnetic plates in complex magnetic fields, International Journal of Engineering Science, 35(15) (1997) 1405-1417.
[15] T. Takagi, A New Numerical Analysis Method of Dynamic Behavior of a Thin Plateunder Magnetic Field Considering Magnetic Visous Damping Effect, International journal of applied electromagnetics in materials, 4(1) (1993) 35-42.
[16] C.B. Lin, Destabilizing Effect of In-Plane Magnetic Field on Panel Flutter, Journal of Mechanics, 15(2) (1999)79-87.
[17] Y.D. Hu, H.R. Xu, Nonlinear natural vibration of a circular plate in the non-uniform induced magnetic field, Archive of Applied Mechanics, 91(6) (2021) 2513-2533.
[18] G.Y. Wu, Non-linear vibration of bimaterial magneto-elastic cantilever beam with thermal loading, International Journal of Non-Linear Mechanics, 55 (2013) 10-18.
[19] G.Y. Wu, Transient vibration analysis of a pinned beam with transverse magnetic fields and thermal loads, Journal of vibration and acoustics, 127(3) ( 2005) 247-253.
[20] Q. Li, L. Zhu, H. Ruan, Electromagnetic–Thermo–Mechanical Coupling Behavior of Cu/Si Layered Thin Plate Under Pulsed Magnetic Field, Acta Mechanica Solida Sinica, 35(1) (2022) 90-100.
[21] D.V. Hieu, N.T. Hoa, L.Q. Duy N.T. Kim Thoa, Nonlinear Vibration of an Electrostatically Actuated Functionally Graded Microbeam under Longitudinal Magnetic Field, Journal of Applied and Computational Mechanics, 7(3) (2021) 1537-1549.
[22] F. Ebrahimi, A. Seyfi, M. Nouraei, P.Haghi, Influence of magnetic field on the wave propagation response of functionally graded (FG) beam lying on elastic foundation in thermal environment, Waves in Random and Complex Media, 31(1) (2021) 1-19.
[23] T. Pourreza, A. Alijani, V.A. Maleki, A. Kazemi, Nonlinear vibration of nanosheets subjected to electromagnetic fields and electrical current, Advances in nano research, 10(5) (2021) 481-491.
[24] T. Pourreza, A. Alijani, V.A. Maleki, A. Kazemi, The effect of magnetic field on buckling and nonlinear vibrations of Graphene nanosheets based on nonlocal elasticity theory. International Journal of Nano Dimension, 13(1) (2022) 54-70.
[25] Y.H. Pao, Electromagnetic forces in deformable continua, In: Mechanics today, Volume 4.(A78-35706 14-70) New York, 4 (1978) 209-305.
[26] A. H. Ghorbanpour Arani, M. J. Maboudi, A. Ghorbanpour Arani, S. Amir, 2D-magnetic field and biaxiall in-plane pre-load effects on the vibration of double bonded orthotropic graphene sheets, Journal of Solid Mechanics 5(2) (2013), 193-205.
[27] F.C. Moon, P. Graneau, Magneto-solid mechanics, Physics Today, 38(76) (1985) 79.
[28] D. J. Griffiths, Introduction to electrodynamics, American Journal of Physics, 73(6) (2005), 574-583.
[29] L.Wei, S.A. Kah, H. Ruilong, Vibration analysis of a ferromagnetic plate subjected to an inclined magnetic field. International Journal of Mechanical Sciences, 49(4) (2007) 440-446.
[30] J. N. Reddy, Theory and analysis of elastic plates and shells, CRC press, (2006).
[31] R.B. Hetnarski, M.R. Eslami, G. Gladwell, Thermal stresses: advanced theory and applications, Springer, 41(2009).
[32] M.Eslami, H. Vahedi, Coupled thermoelasticity beam problems, AIAA journal, 27(5) (1989) 662-665.
[33] M.N. Özisik, M.N. Özışık, Heat conduction, John Wiley & Sons, ( 1993).