مطالعه رفتار ارتعاشات غیرخطی ورق‌های فرومغناطیس حامل جریان الکتریکی در میدان‌های مغناطیسی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 علوم و تحقیقات تهران*مهندسی مکانیک

2 دانشجو

چکیده

 در مطالعه حاضر، با در نظر گرفتن کشش‌های مغناطیسی و حرارت ایجاد شده در اثر جریان الکتریکی و جریان‌ گردابی، معادلات غیرخطی جدیدی برای بررسی رفتار ارتعاشی ورق‌های فرومغناطیس حامل جریان الکتریکی واقع در میدان مغناطیسی ارائه شده است. پس از استخراج معادلات دیفرانسیل حاکم بر سیستم با استفاده از قانون دوم نیوتن، معادلات غیرخطی کوپل با استفاده از روش گالرکین گسسته‌سازی شده و سپس به صورت عددی حل شده‌‌اند. نتایج عددی ارائه شده در تحقیق حاضر با نتایج موجود در ادبیات فن مقایسه شده و سپس اثر پارامترهای مختلف بر روی مشخصه‌های ارتعاشی ورق فرومغناطیس نرم بررسی شده است. نتایج تحقیق نشان می‌دهد که میدان مغناطیسی و جریان الکتریکی تأثیر قابل توجهی بر روی رفتار ارتعاشی نوار ورق دارند و منجر به افزایش دامنه نوسانات سیستم می‌شوند. وجود میدان مغناطیسی باعث کاهش سفتی معادل ورق شده و افزایش آن ناپایداری استاتیکی را در سیستم رقم می زند. همچنین با در نظر گرفتن مؤلفه نیروی ایجاد شده در اثر کشش‌های مغناطیسی که نوآوری این مقاله می‌باشد، خیز استاتیکی در ورق ایجاد می‌شود و بر روی پاسخ حالت ماندگار آن تأثیر می‌گذارد. از طرفی در بررسی اثرات حرارتی مشخص گردید که فرض کوپل حرارتی باعث افزایش فرکانس طبیعی نوار ورق می‌شود. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of Nonlinear Vibration Behavior of an Electric Current-Carrying Ferromagnetic Plate in Magnetic Field

نویسندگان [English]

  • Nariman Ashrafi Khorasani 1
  • elham tahmasebi 2
1 هییت علمی
2 PhD student
چکیده [English]

In the present study, considering the magnetic tractions and heat generated by electric current and eddy current, new nonlinear equations have been proposed to investigate the vibrational behavior of ferromagnetic plates carrying an electric current under a magnetic field. After extracting the governing differential equations of the system using Newton's second law, the coupled nonlinear equations are discretized using the Galerkin method and then solved numerically. The numerical results presented in the present study are compared with the results in the technical literature and then the effect of different parameters on the vibration characteristics of soft ferromagnetic plates is investigated. The results show that the magnetic field and electric current have a significant effect on the vibration behavior of the plate and lead to an increase in the amplitude oscillations of the system. The presence of a magnetic field reduces the equivalent stiffness of the plate and increases it, resulting in static instability in the system. Also, by considering the force created by magnetic tractions, a static rise is created in the plate and affects its steady-state response. In the study of thermal effects, it was found that the assumption of thermal coupling increases the natural frequency of the plate. 

کلیدواژه‌ها [English]

  • Vibration behavior
  • Ferromagnetic plate
  • Electric and eddy current
  • Magnetic field
  • Magnetic traction
[1] I. Esen, C. Özarpa, M.A. Eltaher, Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment, Composite Structures, 261 (2021) 113552.
[2] R. Jahanghiry, R. Yahyazadeh, N. Sharafkhani, V.A. Maleki, Stability analysis of FGM microgripper subjected to nonlinear electrostatic and temperature variation loadings, Science and Engineering of Composite Materials, 23(2) (2016) 199-207.
[3] Y.D. Hu, H.R. Xu, Nonlinear natural vibration of a circular plate in the non-uniform induced magnetic field, Archive of Applied Mechanics, 91(6) (2021) 1-21.
[4] T. Takagi, J. Tani, Y. Matsubara, I. Mogi, Dynamic behavior of fusion structural components under strong magnetic fields, Fusion engineering and design, 27 (1995) 481-489.
[5] A. Ghobadi, Y.T. Beni, H. Golestanian, Size dependent thermo-electro-mechanical nonlinear bending analysis of flexoelectric nano-plate in the presence of magnetic field, International Journal of Mechanical Sciences, 152 (2019) 118-137.
[6] Z. Su, G. Jin, T. Ye, Electro-mechanical vibration characteristics of functionally graded piezoelectric plates with general boundary conditions, International Journal of Mechanical Sciences, 138 (2018) 42-53.
[7] J. Li, Y. Hu, Principal and internal resonance of rectangular conductive thin plate in transverse magnetic field, Theoretical and Applied Mechanics Letters, 8(4) (2018) 257-266.
[8] Z. Su, G. Jin, T. Ye, Electro-mechanical vibration characteristics of functionally graded piezoelectric plates with general boundary conditions, International Journal of Mechanical Sciences, 138 (2018) 42-53.
[9] F. Moon, Y. Pao, Vibration and dynamic instability of a beam-plate in a transverse magnetic field, Journal of Applied Mechanics, 36(1) (1969) 92-100.
[10] P. Yih-Hsing, Y. Chau-Shioung, A linear theory for soft ferromagnetic elastic solids, International Journal of Engineering Science, 11(4) (1973) 415-436.
[11] W.F. Brown, Magnetoelastic interactions, Springer, (1966).
[12] A.C. Eringen, Theory of electromagnetic elastic plates, International Journal of Engineering Science, 27(4) (1989) 363-375.
[13] A.C. Eringen, G.A. Maugin, Electrodynamics of continua I: foundations and solid media, Springer Science & Business Media, (2012).
[14] Y. H. Zhou, X. Zheng,  A general expression of magnetic force for soft ferromagnetic plates in complex magnetic fields, International Journal of Engineering Science, 35(15) (1997) 1405-1417.
[15] T. Takagi, A New Numerical Analysis Method of Dynamic Behavior of a Thin Plateunder Magnetic Field Considering Magnetic Visous Damping Effect, International journal of applied electromagnetics in materials, 4(1) (1993) 35-42.
[16] C.B. Lin, Destabilizing Effect of In-Plane Magnetic Field on Panel Flutter, Journal of Mechanics, 15(2) (1999)79-87.
[17] Y.D. Hu, H.R. Xu, Nonlinear natural vibration of a circular plate in the non-uniform induced magnetic field, Archive of Applied Mechanics, 91(6) (2021) 2513-2533.
[18] G.Y. Wu, Non-linear vibration of bimaterial magneto-elastic cantilever beam with thermal loading, International Journal of Non-Linear Mechanics, 55 (2013) 10-18.
[19] G.Y. Wu, Transient vibration analysis of a pinned beam with transverse magnetic fields and thermal loads, Journal of vibration and acoustics, 127(3) ( 2005) 247-253.
[20] Q. Li, L. Zhu, H. Ruan, Electromagnetic–Thermo–Mechanical Coupling Behavior of Cu/Si Layered Thin Plate Under Pulsed Magnetic Field, Acta Mechanica Solida Sinica, 35(1) (2022) 90-100.
[21] D.V. Hieu, N.T. Hoa, L.Q. Duy N.T. Kim Thoa, Nonlinear Vibration of an Electrostatically Actuated‎ Functionally Graded Microbeam under Longitudinal Magnetic‎ Field, Journal of Applied and Computational Mechanics, 7(3) (2021) 1537-1549.
[22] F. Ebrahimi, A. Seyfi, M. Nouraei, P.Haghi, Influence of magnetic field on the wave propagation response of functionally graded (FG) beam lying on elastic foundation in thermal environment, Waves in Random and Complex Media, 31(1) (2021) 1-19.
[23] T. Pourreza, A. Alijani, V.A. Maleki, A. Kazemi, Nonlinear vibration of nanosheets subjected to electromagnetic fields and electrical current, Advances in nano research, 10(5) (2021) 481-491.
[24] T. Pourreza, A. Alijani, V.A. Maleki, A. Kazemi, The effect of magnetic field on buckling and nonlinear vibrations of Graphene nanosheets based on nonlocal elasticity theory. International Journal of Nano Dimension, 13(1) (2022) 54-70.
[25] Y.H. Pao, Electromagnetic forces in deformable continua, In: Mechanics today, Volume 4.(A78-35706 14-70) New York, 4 (1978) 209-305.
[26] A. H. Ghorbanpour Arani, M. J. Maboudi, A. Ghorbanpour Arani, S. Amir, 2D-magnetic field and biaxiall in-plane pre-load effects on the vibration of double bonded orthotropic graphene sheets, Journal of Solid Mechanics 5(2) (2013), 193-205.
[27] F.C. Moon, P. Graneau, Magneto-solid mechanics, Physics Today, 38(76) (1985) 79.
[28] D. J. Griffiths, Introduction to electrodynamics, American Journal of Physics, 73(6) (2005), 574-583.
[29] L.Wei, S.A. Kah, H. Ruilong, Vibration analysis of a ferromagnetic plate subjected to an inclined magnetic field. International Journal of Mechanical Sciences, 49(4) (2007) 440-446.
[30] J. N. Reddy, Theory and analysis of elastic plates and shells, CRC press, (2006).
[31] R.B. Hetnarski, M.R. Eslami, G. Gladwell, Thermal stresses: advanced theory and applications, Springer, 41(2009).
[32] M.Eslami, H. Vahedi, Coupled thermoelasticity beam problems, AIAA journal, 27(5) (1989) 662-665.
[33] M.N. Özisik, M.N. Özışık, Heat conduction, John Wiley & Sons, ( 1993).