[1] N. Gascoin, Q. Yang, K. Chetehouna, Thermal effects of CO2 on the NOx formation behavior in the CH4 diffusion combustion system, Applied Thermal Engineering, 110 (2017) 144-149.
[2] M.R. Shakeel, Y.S. Sanusi, E.M. Mokheimer, Numerical modeling of oxy-methane combustion in a model gas turbine combustor, Applied energy, 228 (2018) 68-81.
[3] X. Yang, A. Clements, J. Szuhánszki, X. Huang, O.F. Moguel, J. Li, J. Gibbins, Z. Liu, C. Zheng, D. Ingham, Prediction of the radiative heat transfer in small and large scale oxy-coal furnaces, Applied energy, 211 (2018) 523-537.[4] M. Ditaranto, T. Oppelt, Radiative heat flux characteristics of methane flames in oxy-fuel atmospheres, Experimental Thermal and Fluid Science, 35(7) (2011) 1343-1350.[5] S. Hjärtstam, R. Johansson, K. Andersson, F. Johnsson, Computational fluid dynamics modeling of oxy-fuel flames: the role of soot and gas radiation, Energy & fuels, 26(5) (2012) 2786-2797.
[6] R. Viskanta, M. Mengüç, Radiation heat transfer in combustion systems, Progress in Energy and Combustion Science, 13(2) (1987) 97-160.
[7] E. Keramida, H. Liakos, M. Founti, A. Boudouvis, N. Markatos, Radiative heat transfer in natural gas-fired furnaces, International Journal of Heat and Mass Transfer, 43(10) (2000) 1801-1809.
[8] M. Bidi, R. Hosseini, M. Nobari, Numerical analysis of methane–air combustion considering radiation effect, Energy Conversion and Management, 49(12) (2008) 3634-3647.[9] M. Rajhi, R. Ben-Mansour, M. Habib, M. Nemitallah, K. Andersson, Evaluation of gas radiation models in CFD modeling of oxy-combustion, Energy conversion and management, 81 (2014) 83-97.[10] F.R. Centeno, C.V. da Silva, F.H. França, The influence of gas radiation on the thermal behavior of a 2D axisymmetric turbulent non-premixed methane–air flame, Energy conversion and management, 79 (2014) 405-414.[11] H.A. El-Asrag, A.C. Iannetti, S.V. Apte, Large eddy simulations for radiation-spray coupling for a lean direct injector combustor, Combustion and flame, 161(2) (2014) 510-524.[12] L. Wang, D. Haworth, S. Turns, M. Modest, Interactions among soot, thermal radiation, and NOx emissions in oxygen-enriched turbulent nonpremixed flames: a computational fluid dynamics modeling study, Combustion and Flame, 141(1-2) (2005) 170-179.[13] A.C. Benim, S. Iqbal, W. Meier, F. Joos, A. Wiedermann, Numerical investigation of turbulent swirling flames with validation in a gas turbine model combustor, Applied thermal engineering, 110 (2017) 202-212.
[14] G. Abdizadeh, S. Noori, H.R. Tajik, M. Shahryari, M. Saeedi, Numerical investigation of Hybrid Wick Structure Effect on Thermal Performance of a Thin Flat Heat Pipe, Amirkabir Journal of Mechanical Engineering, 53(11) (2022) 10-10.
[15] M.S. Moemenbellah-Fard, S. Noori, Discrete ordinate and P1-based approximations of heater transparency on radiation-convection of four separate gases in factory setting, Building Simulation, 13(3) (2020) 647-663.
[16] V. Tahmasbi, S. Noori, Extending Inverse Heat Conduction Method to Estimate Flight Trajectory of a Reentry Capsule, AUT Journal of Mechanical Engineering, 4(4) (2020) 7-7.[17] M. Tadjfar, S. Kasmaiee, S. Noori, Optimization of NACA 0012 Airfoil Performance in Dynamics Stall Using Continuous Suction Jet, Fluids Engineering Division Summer Meeting, (2020).[18] M. Tadjfar, S. Kasmaiee, S. Noori, Continuous Blowing Jet Flow Control Optimization in Dynamic Stall of NACA0012 Airfoil, Fluids Engineering Division Summer Meeting, (2020).[19] S. kasmaiee, M. Tadjfar, S. kasmaiee, Investigation of Suction Jet Parameters in Flow Control of Dynamic Stall, Journal of Applied and Computational Sciences in Mechanics, 32(2) (2021) 181-200.[20] J.R. Howell, M. Perlmutter, Monte Carlo solution of thermal transfer through radiant media between gray walls, (1964).[21] T.-J. Li, S.-N. Li, Y. Yuan, F.-Q. Wang, H.-P. Tan, Light field imaging analysis of flame radiative properties based on Monte Carlo method, International Journal of Heat and Mass Transfer, 119 (2018) 303-311.[22] R. Koch, R. Becker, Evaluation of quadrature schemes for the discrete ordinates method, Journal of Quantitative Spectroscopy and Radiative Transfer, 84(4) (2004) 423-435.[23] E. Chui, G. Raithby, Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method, Numerical Heat Transfer, 23(3) (1993) 269-288.[24] P. Rivière, A. Soufiani, Updated band model parameters for H2O, CO2, CH4 and CO radiation at high temperature, International Journal of Heat and Mass Transfer, 55(13-14) (2012) 3349-3358.[25] X. Yang, Z. He, S. Dong, H. Tan, Evaluation of the non-gray weighted sum of gray gases models for radiative heat transfer in realistic non-isothermal and non-homogeneous flames using decoupled and coupled calculations, International Journal of Heat and Mass Transfer, 134 (2019) 226-236.[26] M.H. Bordbar, G. Węcel, T. Hyppänen, A line by line based weighted sum of gray gases model for inhomogeneous CO2–H2O mixture in oxy-fired combustion, Combustion and flame, 161(9) (2014) 2435-2445.
[27] F. Cassol, R. Brittes, F.H. França, O.A. Ezekoye, Application of the weighted-sum-of-gray-gases model for media composed of arbitrary concentrations of H2O, CO2 and soot, International Journal of Heat and Mass Transfer, 79 (2014) 796-806.
[28] J. Guo, L. Shen, J. Wan, P. Li, Z. Liu, A full spectrum k‐distribution‐based weighted‐sum‐of‐gray‐gases model for pressurized oxy‐fuel combustion, International Journal of Energy Research, 45(2) (2021) 3410-3420.[29] N. Syred, M. Abdulsada, A. Griffiths, T. O’Doherty, P. Bowen, The effect of hydrogen containing fuel blends upon flashback in swirl burners, Applied Energy, 89(1) (2012) 106-110.[30] B. Rohani, K.M. Saqr, Effects of hydrogen addition on the structure and pollutant emissions of a turbulent unconfined swirling flame, International Communications in Heat and Mass Transfer, 39(5) (2012) 681-688.[31] I. Yılmaz, Effect of swirl number on combustion characteristics in a natural gas diffusion flame, Journal of Energy Resources Technology, 135(4) (2013).[32] L. Ziani, A. Chaker, K. Chetehouna, A. Malek, B. Mahmah, Numerical simulations of non-premixed turbulent combustion of CH4–H2 mixtures using the PDF approach, International journal of hydrogen energy, 38(20) (2013) 8597-8603.[33] I. Yilmaz, M. Ilbas, An experimental study on hydrogen–methane mixtured fuels, International communications in heat and mass transfer, 35(2) (2008) 178-187.[34] F. Wang, X. Xie, Q. Jiang, L. Zhou, Effect of turbulence on NO formation in swirling combustion, Chinese Journal of Aeronautics, 27(4) (2014) 797-804.
[35] G. Kim, Y.D. Lee, C.H. Sohn, K.W. Choi, H.S. Kim, Experimental investigation on combustion and emission characteristics of a premixed flame in a gas-turbine combustor with a vortex generator, Applied Thermal Engineering, 77 (2015) 57-64.
[36] A. Khelil, H. Naji, L. Loukarfi, G. Mompean, Prediction of a high swirled natural gas diffusion flame using a PDF model, Fuel, 88(2) (2009) 374-381.
[37] M. İlbaş, S. Karyeyen, İ. Yilmaz, Effect of swirl number on combustion characteristics of hydrogen-containing fuels in a combustor, International Journal of Hydrogen Energy, 41(17) (2016) 7185-7191.
[38] X. Yang, Z. He, Q. Niu, S. Dong, H. Tan, Numerical analysis of turbulence radiation interaction effect on radiative heat transfer in a swirling oxyfuel furnace, International Journal of Heat and Mass Transfer, 141 (2019) 1227-1237.
[39] J. Guo, F. Hu, X. Jiang, P. Li, Z. Liu, Effects of gas and particle radiation on IFRF 2.5 MW swirling flame under oxy-fuel combustion, Fuel, 263 (2020) 116634.
[40] N. Wilkes, P. Guilbert, C. Shepherd, S. Simcox, The application of Harwell-Flow 3D to combustion models, Atomic Energy Authority Report, Harwell, UK, Paper No. AERE-R13508, (1989).
[41] D. Spalding, The numerical computation of turbulent flow, Comp. Methods Appl. Mech. Eng., 3 (1974) 269.