[1] R.B. Langtry, F.R. Menter, Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes, AIAA journal, 47(12) (2009) 2894-2906.
[2] M.V. Morkovin, On the many faces of transition, in: Viscous drag reduction, Springer, 1969, pp. 1-31.
[3] E. Malkiel, R. Mayle, Transition in a separation bubble, (1996).
[4] H. Schlichting, J. Kestin, Boundary layer theory, Springer, 1961.
[5] F.R. Menter, R.B. Langtry, S. Likki, Y. Suzen, P. Huang, S. Völker, A correlation-based transition model using local variables—part I: model formulation, (2006) 413-422.
[6] F. Menter, R. Langtry, S. Völker, Transition modelling for general purpose CFD codes, Flow, turbulence and combustion, 77(1-4) (2006) 277-303.
[7] F. Menter, T. Esch, Elements of industrial heat transfer predictions, in: 16th Brazilian Congress of Mechanical Engineering (COBEM), 2001, pp. 650.
[8] A. Hellsten, Some improvements in Menter's k-omega SST turbulence model, in: 29th AIAA, Fluid Dynamics Conference, 1998, pp. 2554.
[9] F.R. Menter, M. Kuntz, R. Langtry, Ten years of industrial experience with the SST turbulence model, Turbulence, heat and mass transfer, 4(1) (2003) 625-632.
[10] J. Abraham, E.M. Sparrow, J. Tong, Breakdown of laminar pipe flow into transitional intermittency and subsequent attainment of fully developed intermittent or turbulent flow, Numerical Heat Transfer, Part B: Fundamentals, 54(2) (2008) 103-115.
[11] J. Abraham, E. Sparrow, J. Tong, Heat transfer in all pipe flow regimes: laminar, transitional/intermittent, and turbulent, International Journal of Heat and Mass Transfer, 52(3-4) (2009) 557-563.
[12] J. Abraham, E. Sparrow, J. Tong, W. Minkowycz, Intermittent Flow Modeling: Part I—Hydrodynamic and Thermal Modeling of Steady, Intermittent Flows in Constant Area Ducts, in: International Heat Transfer Conference, 2010, pp. 659-667.
[13] J. Abraham, E. Sparrow, J. Tong, W. Minkowycz, Intermittent Flow Modeling: Part 2—Time-Varying Flows and Flows in Variable Area Ducts, in: International Heat Transfer Conference, 2010, pp. 625-633.
[14] J. Abraham, E. Sparrow, W. Minkowycz, R. Ramazani-Rend, J. Tong, Modeling internal flows by an extended menter transition model, Turbulence: Theory, Types, and Simulation, Nova Publishers, Hauppage, NY, (2011) 149-184.
[15] J. Abraham, E. Sparrow, W. Minkowycz, Internal-flow Nusselt numbers for the low-Reynolds-number end of the laminar-to-turbulent transition regime, International Journal of Heat and Mass Transfer, 54(1-3) (2011) 584-588.
[16] R. Lovik, J. Abraham, W. Minkowycz, E. Sparrow, Laminarization and turbulentization in a pulsatile pipe flow, Numerical Heat Transfer, Part A: Applications, 56(11) (2009) 861-879.
[17] T. Gebreegziabher, E.M. Sparrow, J. Abraham, E. Ayorinde, T. Singh, High-frequency pulsatile pipe flows encompassing all flow regimes, Numerical Heat Transfer, Part A: Applications, 60(10) (2011) 811-826.
[18] F.R. Menter, P.E. Smirnov, T. Liu, R. Avancha, A one-equation local correlation-based transition model, Flow, Turbulence and Combustion, 95(4) (2015) 583-619.
[19] J. Abraham, E. Sparrow, J. Gorman, Y. Zhao, W. Minkowycz, Application of an intermittency model for laminar, transitional, and turbulent internal flows, Journal of Fluids Engineering, 141(7) (2019).
[20] K. Nering, K.J.I.J.o.N.M.f.H. Rup, F. Flow, Modified algebraic model of laminar-turbulent transition for internal flows, 30 (2019) 1743-1753.
[21] S. Kubacki, E.J.I.J.o.H. Dick, F. Flow, An algebraic model for bypass transition in turbomachinery boundary layer flows, 58 (2016) 68-83.
[22] H.W. Emmons, The laminar-turbulent transition in a boundary layer-Part I, Journal of the Aeronautical Sciences, 18(7) (1951) 490-498.
[23] M. Mitchner, Propagation of turbulence from an instantaneous point disturbance, Journal of the Aeronautical Sciences, 21(5) (1954) 350-351.
[24] V.C. Patel, G. Scheuerer, Calculation of two-dimensional near and far wakes, AIAA Journal, 20(7) (1982) 900-907.
[25] A. Melling, J. Whitelaw, Turbulent flow in a rectangular duct, Journal of Fluid Mechanics, 78(2) (1976) 289-315.
[26] F. Anselmet, F. Ternat, M. Amielh, O. Boiron, P. Boyer, L. Pietri, Axial development of the mean flow in the entrance region of turbulent pipe and duct flows, Comptes Rendus Mécanique, 337(8) (2009) 573-584.
[27] F. Durst, B. Ünsal, Forced laminar-to-turbulent transition of pipe flows, Journal of Fluid Mechanics, 560 (2006) 449-464.
[28] G. Whan, R.J.A.J. Rothfus, Characteristics of transition flow between parallel plates, 5(2) (1959) 204-208.
[29] W. Minkowycz, J. Abraham, E.M. Sparrow, Numerical simulation of laminar breakdown and subsequent intermittent and turbulent flow in parallel-plate channels: Effects of inlet velocity profile and turbulence intensity, International Journal of Heat and Mass Transfer, 52(17-18) (2009) 4040-4046.
[30] B. Ruck, B. Makiola, Flow separation over the inclined step, Physics of Separated Flows—Numerical, Experimental, and Theoretical Aspects, (1993) 47-55.
[31] H.H. Choi, J. Nguyen, Numerical investigation of backward facing step flow over various step angles, Procedia Engineering, 154 (2016) 420-425.