[1] M.F. Modest, S. Mazumder, Radiative heat transfer, Academic press, 2021.
[2] J.R. Howell, M.P. Mengüç, K. Daun, R. Siegel, Thermal radiation heat transfer, CRC press, 2020.
[3] R.-R. Zhou, B.-W. Li, The modified discrete ordinates method for radiative heat transfer in two-dimensional cylindrical medium, International Journal of Heat and Mass Transfer, 139 (2019) 1018-1030.
[4] Q. Nguyen, M.H. Beni, A. Parsian, O. Malekahmadi, A. Karimipour, Discrete ordinates thermal radiation with mixed convection to involve nanoparticles absorption, scattering and dispersion along radiation beams through the nanofluid, Journal of Thermal Analysis and Calorimetry, 143(3) (2021) 2801-2824.
[5] F. Asllanaj, S. Contassot-Vivier, O. Botella, F.H. França, Numerical solutions of radiative heat transfer in combustion systems using a parallel modified discrete ordinates method and several recent formulations of WSGG model, Journal of Quantitative Spectroscopy and Radiative Transfer, 274 (2021) 107863.
[6] Z. Sun, C.D. Hauck, Low-memory, discrete ordinates, discontinuous Galerkin methods for radiative transport, SIAM Journal on Scientific Computing, 42(4) (2020) B869-B893.
[7] S. Gugercin, A.C. Antoulas, A survey of model reduction by balanced truncation and some new results, International Journal of Control, 77(8) (2004) 748-766.
[8] G. Scarciotti, A. Astolfi, Nonlinear model reduction by moment matching, Foundations and Trends® in Systems and Control, 4(3-4) (2017) 224-409.
[9] M. Billaud-Friess, A. Nouy, Dynamical model reduction method for solving parameter-dependent dynamical systems, SIAM Journal on Scientific Computing, 39(4) (2017) A1766-A1792.
[10] M.C. Varona, R. Gebhart, J. Suk, B. Lohmann, Practicable Simulation-Free Model Order Reduction by Nonlinear Moment Matching, arXiv preprint arXiv:1901.10750, (2019).
[11] N. Faedo, F.J.D. Piuma, G. Giorgi, J.V. Ringwood, Nonlinear model reduction for wave energy systems: a moment-matching-based approach, Nonlinear Dynamics, 102(3) (2020) 1215-1237.
[12] G. Scarciotti, A.R. Teel, On moment matching for stochastic systems, IEEE Transactions on Automatic Control, 67(2) (2021) 541-556.
[13] Y. Liang, H. Lee, S. Lim, W. Lin, K. Lee, C. Wu, Proper orthogonal decomposition and its applications—Part I: Theory, Journal of Sound and vibration, 252(3) (2002) 527-544.
[14] J. Zhou, X. Wu, L. Kang, M. Wang, J. Huang, An adaptive proper orthogonal decomposition method for evaluating variability bounds of antenna responses, IEEE Antennas and Wireless Propagation Letters, 18(9) (2019) 1907-1911.
[15] K. Li, Z. Sha, W. Xue, X. Chen, H. Mao, G. Tan, A fast modeling and optimization scheme for greenhouse environmental system using proper orthogonal decomposition and multi-objective genetic algorithm, Computers and Electronics in Agriculture, 168 (2020) 105096.
[16] Y. Liang, X.-W. Gao, B.-B. Xu, Q.-H. Zhu, Z.-Y. Wu, A new alternating iteration strategy based on the proper orthogonal decomposition for solving large-scaled transient nonlinear heat conduction problems, Journal of Computational Science, 45 (2020) 101206.
[17] G. Jiang, H. Liu, K. Yang, X. Gao, A fast reduced-order model for radial integral boundary element method based on proper orthogonal decomposition in nonlinear transient heat conduction problems, Computer Methods in Applied Mechanics and Engineering, 368 (2020) 113190.
[18] Q.-H. Zhu, Y. Liang, X.-W. Gao, A proper orthogonal decomposition analysis method for transient nonlinear heat conduction problems. Part 2: Advanced algorithm, Numerical Heat Transfer, Part B: Fundamentals, 77(2) (2020) 116-137.
[19] K.-J. Bathe, Computational fluid and solid mechanics, Elsevier, 2001.
[20] B. Xu, A. Yebi, M. Hoffman, S. Onori, A rigorous model order reduction framework for waste heat recovery systems based on proper orthogonal decomposition and galerkin projection, IEEE Transactions on Control Systems Technology, 28(2) (2018) 635-643.
[21] V. Shinde, E. Longatte, F. Baj, Y. Hoarau, M. Braza, Galerkin-free model reduction for fluid-structure interaction using proper orthogonal decomposition, Journal of Computational Physics, 396 (2019) 579-595.
[22] A. Towne, Space-time Galerkin projection via spectral proper orthogonal decomposition and resolvent modes, in: AIAA Scitech 2021 Forum, 2021, pp. 1676.
[23] B. Koo, H. Kim, T. Jo, S. Kim, J.Y. Yoon, Proper orthogonal decomposition–Galerkin projection method for quasi-two-dimensional laminar hydraulic transient flow, Journal of Hydraulic Research, 59(2) (2021) 224-234.
[24] M. Dehghan, M. Abbaszadeh, An upwind local radial basis functions-differential quadrature (RBF-DQ) method with proper orthogonal decomposition (POD) approach for solving compressible Euler equation, Engineering Analysis with Boundary Elements, 92 (2018) 244-256.
[25] S. Wang, S. Khatir, M.A. Wahab, Proper Orthogonal Decomposition for the prediction of fretting wear characteristics, Tribology International, 152 (2020) 106545.
[26] H. Wang, W. Li, Z. Qian, G. Wang, Reconstruction of wind pressure fields on cooling towers by radial basis function and comparisons with other methods, Journal of Wind Engineering and Industrial Aerodynamics, 208 (2021) 104450.
[27] M. Mendez, M. Balabane, J.-M. Buchlin, Multi-scale proper orthogonal decomposition of complex fluid flows, Journal of Fluid Mechanics, 870 (2019) 988-1036.
[28] S.D. Muralidhar, B. Podvin, L. Mathelin, Y. Fraigneau, Spatio-temporal proper orthogonal decomposition of turbulent channel flow, Journal of Fluid Mechanics, 864 (2019) 614-639.
[29] L.I. Abreu, A.V. Cavalieri, P. Schlatter, R. Vinuesa, D.S. Henningson, Spectral proper orthogonal decomposition and resolvent analysis of near-wall coherent structures in turbulent pipe flows, Journal of Fluid Mechanics, 900 (2020).
[30] L. Shen, K.-Y. Teh, P. Ge, F. Zhao, D.L. Hung, Temporal evolution analysis of in-cylinder flow by means of proper orthogonal decomposition, International Journal of Engine Research, 22(5) (2021) 1714-1730.
[31] J. Novo, S. Rubino, Error analysis of proper orthogonal decomposition stabilized methods for incompressible flows, SIAM Journal on Numerical Analysis, 59(1) (2021) 334-369.
[32] A. Antoranz, A. Ianiro, O. Flores, M. García-Villalba, Extended proper orthogonal decomposition of non-homogeneous thermal fields in a turbulent pipe flow, International Journal of Heat and Mass Transfer, 118 (2018) 1264-1275.
[33] J. Tencer, K. Carlberg, M. Larsen, R. Hogan, Accelerated solution of discrete ordinates approximation to the boltzmann transport equation for a gray absorbing–emitting medium via model reduction, Journal of Heat Transfer, 139(12) (2017).
[34] L. Soucasse, A.G. Buchan, S. Dargaville, C.C. Pain, An angular reduced order model for radiative transfer in non grey media, Journal of Quantitative Spectroscopy and Radiative Transfer, 229 (2019) 23-32.
[35] M. Tano, J. Ragusa, D. Caron, P. Behne, Affine reduced-order model for radiation transport problems in cylindrical coordinates, Annals of Nuclear Energy, 158 (2021) 108214.
[36] H. Amiri, S. Mansouri, A. Safavinejad, Combined conductive and radiative heat transfer in an anisotropic scattering participating medium with irregular geometries, International Journal of Thermal Sciences, 49(3) (2010) 492-503.
[37] Z. Ostrowski, R. BiaĆecki, A.J. Kassab, Solving inverse heat conduction problems using trained POD-RBF network inverse method, Inverse Problems in Science and Engineering, 16(1) (2008) 39-54.
[38] D.R. Rousse, G. Gautier, J.-F. Sacadura, Numerical predictions of two-dimensional conduction, convection, and radiation heat transfer. II. Validation, International journal of thermal sciences, 39(3) (2000) 332-353.