[1] Z. Liu, C. Wang, Y. Wu, L. Geng, X. Zhang, D. Zhang, H. Hu, Y. Zhang, X. Li, W.J.P. Liu, Synthesis of uniform-sized and microporous MIL-125 (Ti) to boost arsenic removal by chemical adsorption, 196 (2021) 114980.
[2] M. Pillarella, Y.N. Liu, J. Petrowski, R. Bower, The C3MR liquefaction cycle: Versatility for a fast growing, ever changing LNG industry, 1 (2007) 139-152.
[3] P.-S. Choi, J.-M. Jeong, Y.-K. Choi, M.-S. Kim, G.-J. Shin, S.-J.J.C.l. Park, A review: methane capture by nanoporous carbon materials for automobiles, 17(1) (2016) 18-28.
[4] S.V. Sawant, S. Banerjee, A.W. Patwardhan, J.B. Joshi, K.J.I.J.o.H.E. Dasgupta, Synthesis of boron and nitrogen co-doped carbon nanotubes and their application in hydrogen storage, 45(24) (2020) 13406-13413.
[5] M. SJ, Infuence of temperature, pressure, nanotube’s diameter and intertube distance on methane adsorption in homogeneous armchair open-ended SWCNT triangular arrays, Theor Chem Acc, 128 (2011) 231.
[6] D. Lozano-Castello, Advances in the study of methane storage in porous carbonaceous materials, Fuel, 81 (2003) 1777.
[7] J.J. Carberry, Chemical and catalytic reaction engineering, Courier Corporation, 2001.
[8] P.-C. Ma, N.A. Siddiqui, G. Marom, J.-K.J.C.P.A.A.S. Kim, Manufacturing, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review, 41(10) (2010) 1345-1367.
[9] D. Lozano-Castello, J. Alcaniz-Monge, M. De la Casa-Lillo, D. Cazorla-Amoros, A.J.F. Linares-Solano, Advances in the study of methane storage in porous carbonaceous materials, 81(14) (2002) 1777-1803.
[10] S. Rashidi, A. Ahmadpour, N. Jahanshahi, M.J. Darabi Mahboub, H.J.S.S. Rashidi, Technology, Application of artificial intelligent modeling for predicting activated carbons properties used for methane storage, 50(1) (2015) 110-120.
[11] M. Gallo, D.J.T.J.o.P.C.C. Glossman-Mitnik, Fuel gas storage and separations by metal− organic frameworks: Simulated adsorption isotherms for H2 and CH4 and their equimolar mixture, 113(16) (2009) 6634-6642.
[12] F. Gándara, H. Furukawa, S. Lee, O.M.J.J.o.t.A.C.S. Yaghi, High methane storage capacity in aluminum metal–organic frameworks, 136(14) (2014) 5271-5274.
[13] J.P. Mota, S. Lyubchik, J.P. Mota, Recent advances in adsorption processes for environmental protection and security, Springer, 2008.
[14] J.S. Oh, Adsorption equilibrium of water vapor on mesoporous materials, J.
Chem. Eng. Data, 48(1458) (2003).
[15] J. Zhu, B. Shi, J. Zhu, L. Chen, J. Zhu, D. Liu, H.J.W.m. Liang, research, Production, characterization and properties of chloridized mesoporous activated carbon from waste tyres, 27(6) (2009) 553-560.
[16] F. Han, Z. Wang, Y. Jiang, Y. Ji, W.J.C.S.i.T.E. Li, Energy assessment and external circulation design for LNG cold energy air separation process under four different pressure matching schemes, 27 (2021) 101251.
[17] J.W. Lee, Adsorption equilibrium and kinetics for capillary condensation of trichloroethylene on MCM-41 and MCM, Microporous Mesoporous Mater, 73 (2004) 109.
[18] I. Men’shchikov, A. Shiryaev, A. Shkolin, V. Vysotskii, E. Khozina, A.J.K.J.o.C.E. Fomkin, Carbon adsorbents for methane storage: Genesis, synthesis, porosity, adsorption, 38(2) (2021) 276-291.
[19] S.S. Samantaray, S.T. Putnam, N.P.J.I. Stadie, Volumetrics of Hydrogen Storage by Physical Adsorption, 9(6) (2021) 45.