[1] H. Mei, M.F. Haider, R. Joseph, A. Migot, V. Giurgiutiu, Recent advances in piezoelectric wafer active sensors for structural health monitoring applications, Sensors, 19(2) (2019) 383.
[2] A.F.G. Tenreiro, A.M. Lopes, L.F.M. da Silva, A review of structural health monitoring of bonded structures using electromechanical impedance spectroscopy, Structural Health Monitoring, 21(2) (2022) 228-249.
[3] N. Sepehry, F. Bakhtiari-Nejad, M. Shamshirsaz, Thermo-Electro Mechanical Impedance based Structural Health Monitoring: Euler-Bernoulli Beam Modeling, AUT Journal of Modeling and Simulation, 49(2) (2017) 143-152.
[4] N. Sepehry, M. Ehsani, W. Zhu, F. Bakhtiari-Nejad, Application of scaled boundary finite element method for vibration-based structural health monitoring of breathing cracks, Journal of Vibration and Control, 27(23-24) (2021) 2870-2886.
[5] N. Sepehry, M. Ehsani, M. Shamshirsaz, Free and forced vibration analysis of piezoelectric patches based on semi-analytic method of scaled boundary finite element method, Amirkabir Journal of Mechanical Engineering, 52(12) (2019) 3463-3484.
[6] N. Sepehry, M. Ehsani, M. Shamshirsaz, M. Sadighi, Contact acoustic nonlinearity identification via online vibro-acoustic modulation technique, Modares Mechanical Engineering, 20(7) (2020) 1719-1730
[7] D. Ai, H. Luo, H. Zhu, Diagnosis and validation of damaged piezoelectric sensor in electromechanical impedance technique, Journal of Intelligent Material Systems and Structures, 28(7) (2017) 837-850.
[8] C. Liang, F.P. Sun, C.A. Rogers, Coupled electro-mechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer, Journal of intelligent material systems and structures, 8(4) (1997) 335-343.
[9] Y.Y. Lim, C.K. Soh, Towards more accurate numerical modeling of impedance based high frequency harmonic vibration, Smart Materials and Structures, 23(3) (2014) 035017.
[10] N. Sepehry, M. Ehsani, M. Shamshirsaz, M. Sadighi, Online health monitoring of marine structures using electromechanical impedance spectroscopy: A simulation approach, in: Journal of Solid and Fluid Mechanics, Shahrood University of Technology, 10 (2020) 67-76.
[11] S. Asadi, M. Shamshirsaz, Y.A. Vaghasloo, Bayesian in-situ parameter estimation of metallic plates using piezoelectric transducers, Smart Structures and Systems, An International Journal, 26(6) (2020) 735-751.
[12] J.E. Mottershead, M. Link, M.I. Friswell, The sensitivity method in finite element model updating: A tutorial, Mechanical systems and signal processing, 25(7) (2011) 2275-2296.
[13] R. Ghanem, H. Owhadi, D. Higdon, Handbook of uncertainty quantification, 2017.
[14] B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Reliability Engineering and System Safety, 93(7) (2008) 964-979.
[15] N. Wiener, The homogeneous chaos, American Journal of Mathematics, 60(4) (1938) 897-936.
[16] D. Xiu, G.E. Karniadakis, The Wiener--Askey polynomial chaos for stochastic differential equations, SIAM journal on scientific computing, 24(2) (2002) 619-644.
[17] S. Oladyshkin, W. Nowak, Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion, Reliability Engineering & System Safety, 106 (2012) 179-190.
[18] X. Wan, G.E. Karniadakis, Beyond wiener-askey expansions: Handling arbitrary PDFs, Journal of Scientific Computing, 27(1-3) (2006) 455-464.
[19] R.G. Ghanem, P.D. Spanos, Stochastic finite elements: a spectral approach, 2003.
[20] M. Berveiller, B. Sudret, M. Lemaire, Stochastic finite element: A non intrusive approach by regression, European Journal of Computational Mechanics, 15(1-3) (2006) 81-92.
[21] M.D. Spiridonakos, E.N. Chatzi, Metamodeling of dynamic nonlinear structural systems through polynomial chaos NARX models, Computers and Structures, 157 (2015) 99-113.
[22] H.-p. Wan, W.-x. Ren, M.D. Todd, Arbitrary polynomial chaos expansion method for uncertainty quantification and global sensitivity analysis in structural dynamics, Mechanical Systems and Signal Processing, 142 (2020) 106732.
[23] X. Wei, H.-P. Wan, J. Russell, S. Živanović, X. He, Influence of mechanical uncertainties on dynamic responses of a full-scale all-FRP footbridge, Composite Structures, 223 (2019) 110964.
[24] J.A.S. Witteveen, S. Sarkar, H. Bijl, Modeling physical uncertainties in dynamic stall induced fluid–structure interaction of turbine blades using arbitrary polynomial chaos, Computers & structures, 85(11-14) (2007) 866-878.
[25] R. Loendersloot, M. Ehsani, N. Sepehry, M. Shamshirsaz, Numerical Modelling of Stochastic Fatigue Damage Accumulation in Thick Composites, in: European Workshop on Structural Health Monitoring, 2020, pp. 776-787.
[26] F. Bakhtiari-Nejad, N. Sepehry, M. Shamshirsaz, Polynomial chaos expansion sensitivity analysis for electromechanical impedance of plate, in: Proceedings of the ASME Design Engineering Technical Conference, 2016, pp. 1-8.
[27] M.D. Spiridonakos, E.N. Chatzi, B. Sudret, Polynomial Chaos Expansion Models for the Monitoring of Structures under Operational Variability, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2(3) (2016) 1-13.
[28] G. Capellari, E. Chatzi, S. Mariani, Cost–benefit optimization of structural health monitoring sensor networks, Sensors (Switzerland), 18(7) (2018) 1-22.
[29] S.S. Kucherenko, Global sensitivity indices for nonlinear mathematical models, Review, Wilmott Mag, 1 (2005) 56-61.
[30] P. Wei, Z. Lu, J. Song, Variable importance analysis: A comprehensive review, Reliability Engineering and System Safety, 142 (2015) 399-432.
[31] I.M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Mathematics and Computers in Simulation, 55(1-3) (2001) 271-280.
[32] V. Giurgiutiu, A.N. Zagrai, Characterization of Piezoelectric Wafer Active Sensors, Journal of Intelligent Materials Systems and Structures, 11(12) (2000) 959-976.
[33] V. Giurgiutiu, Structural Health Monitoring with Piezoelectric Wafer Active Sensors: with Piezoelectric Wafer Active Sensors, 2007.
[34] J.L. Aurentz, L.N. Trefethen, Chopping a chebyshev series, ACM Transactions on Mathematical Software, 43(4) (2017) 1-25.
[35] R. Pachon, R.B. Platte, L.N. Trefethen, Piecewise-smooth chebfuns, IMA Journal of Numerical Analysis, 30(4) (2009) 898-916.
[36] R. Loendersloot, M. Ehsani, M. Shamshirsaz, Fatigue damage identification and remaining useful life estimation of composite structures using piezo wafer active transducers, in: Advances in Asset Management and Condition Monitoring, 2020, pp. 485-497.
[37] C. Soize, R. Ghanem, Physical Systems With Random Uncertainties : Chaos Representations With Arbitrary Probability, 26(2) (2004) 395-410.
[38] O. Ditlevsen, H.O. Madsen, Structural reliability methods, Wiley New York, 1996.
[39] G. Blatman, B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle regression, Journal of Computational Physics, 230(6) (2011) 2345-2367.
[40] B. Sudret, A. Der-Kiureghian, Stochastic finite element methods and reliability, Rep. No. UCB/SEMM-2000, 8 (2000).
[41] B. Sudret, Polynomial chaos expansions and stochastic finite element methods, Risk and reliability in geotechnical engineering, (2014) 265-300.
[42] R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in: Ijcai, (1995), 1137-1145.
[43] O. Chapelle, V. Vapnik, Y. Bengio, Model selection for small sample regression, Machine Learning, 48(1-3) (2002) 9-23.
[44] D.W. Scott, Multivariate density estimation and visualization, in: Handbook of computational statistics, Springer, 2012, pp. 549-569.
[45] A. Janon, T. Klein, A. Lagnoux, M. Nodet, C. Prieur, Asymptotic normality and efficiency of two Sobol index estimators, ESAIM - Probability and Statistics, 18 (2014) 342-364.
[46] A. Saltelli, T. Homma, Importance measures in global sensitivity analysis of model output, Reliab. Eng. Sys. Safety, 52 (1996) 1-17.
[47] K. Konakli, B. Sudret, Global sensitivity analysis using low-rank tensor approximations, Reliability Engineering and System Safety, 156 (2016) 64-83.
[48] C.M.R. BDV, Numerical simulation for health monitoring of thin simply supported plate using PZT transducers, Materials Today: Proceedings, 45 (2021) 3492-3498.
[49] M.D. McKay, R.J. Beckman, W.J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 42(1) (2000) 55-61.
[50] B.G.M. Husslage, G. Rennen, E.R. van Dam, D. den Hertog, Space-filling Latin hypercube designs for computer experiments, Optimization and Engineering, 12(4) (2010) 611-630.
[51] N. Pérez, M.A.B. Andrade, F. Buiochi, J.C. Adamowski, Identification of elastic, dielectric, and piezoelectric constants in piezoceramic disks, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 57(12) (2010) 2772-2783.
[52] W. Gautschi, Orthogonal polynomials (in Matlab), Journal of Computational and Applied Mathematics, 178(1-2 SPEC. ISS.) (2005) 215-234.
[53] S. Rahman, Extended Polynomial Dimensional Decomposition for Arbitrary Probability Distributions, Journal of Engineering Mechanics, 135(12) (2009) 1439-1451.