[1] Y. Furuya, K. Kobayashi, M. Hayakawa, M. Sakamoto, Y. Koizumi, H. Harada, High-temperature ultrasonic fatigue testing of single-crystal superalloys, Materials Letters, 69 (2012) 1-3.
[2] M. Fitzka, B.M. Schonbauer, R.K. Rhein, N. Sanaei, S. Zekriardehani, S.A. Tekalur, J.W. Carroll, H. Mayer, Usability of Ultrasonic Frequency Testing for Rapid Generation of High and Very High Cycle Fatigue Data, Materials (Basel), 14(9) (2021).
[3] H. Ghadimi, A.P. Jirandehi, S. Nemati, S. Guo, Small-sized specimen design with the provision for high-frequency bending-fatigue testing, Fatigue & Fracture of Engineering Materials & Structures, 44(12) (2021) 3517-3537.
[4] S. Heinz, F. Balle, G. Wagner, D. Eifler, Analysis of fatigue properties and failure mechanisms of Ti6Al4V in the very high cycle fatigue regime using ultrasonic technology and 3D laser scanning vibrometry, Ultrasonics, 53(8) (2013) 1433-1440.
[5] I.F. Zuñiga Tello, M. Milković, G.M. Domínguez Almaraz, N. Gubeljak, Ultrasonic and Conventional Fatigue Endurance of Aeronautical Aluminum Alloy 7075-T6, with Artificial and Induced Pre-Corrosion, Metals, 10(8) (2020).
[6] W. Peng, Y. Zhang, B. Qiu, H. Xue, A Brief Review of the Application and Problems in Ultrasonic Fatigue Testing, AASRI Procedia, 2 (2012) 127-133.
[7] C. Bathias, Coupling effect of plasticity, thermal dissipation and metallurgical stability in ultrasonic fatigue, International Journal of Fatigue, 60 (2014) 18-22.
[8] Z.y. Huang, Q. Wang, D. Wagner, C. Bathias, A very high cycle fatigue thermal dissipation investigation for titanium alloy TC4, Materials Science and Engineering: A, 600 (2014) 153–158.
[9] R. Zhang, X. Li, Y. Liu, C. He, Effect of Ultrasonic Peening Treatment on VHCF Behavior of Friction Stir Welded Joints in Aluminum Alloys, IOP Conference Series: Materials Science and Engineering, 611 (2019) 012011.
[10] A. Abboud, A. AlHassan, B. Dönges, J.S. Micha, R. Hartmann, L. Strüder, H.-J. Christ, U. Pietsch, VHCF damage in duplex stainless steel revealed by microbeam energy-dispersive X-ray Laue diffraction, International Journal of Fatigue, 151 (2021).
[11] W. Cui, X. Chen, C. Chen, L. Cheng, J. Ding, H. Zhang, Very High Cycle Fatigue (VHCF) Characteristics of Carbon Fiber Reinforced Plastics (CFRP) under Ultrasonic Loading, Materials (Basel), 13(4) (2020).
[12] A. Illgen, M. Baaske, F. Ballani, A. Weidner, H. Biermann, Influence of ceramic particles and fibre reinforcement in metal-matrix-composites on the VHCF behaviour. Part I: Experimental investigations of fatigue and damage behaviour, in: Fatigue of Materials at Very High Numbers of Loading Cycles, (2018) 295-318.
[13] A. Tridello, VHCF Response of Two AISI H13 Steels: Effect of Manufacturing Process and Size-Effect, Metals, 9(2) (2019).
[14] M. Zhao, T. Wu, Z. Zhao, L. Liu, G. Luo, W. Chen, Ultrasonic Fatigue Device and Behavior of High-Temperature Superalloy Inconel 718 with Self-Heating Phenomenon, Applied Sciences, 10(23) (2020).
[15] J. Soyama, O.M. Ferri, T. Ebel, K.U. Kainer, Axial fatigue testing of Ti–6Al–4V using an alternative specimen geometry fabricated by metal injection moulding, Powder Metallurgy, 59(5) (2016) 344-349.
[16] H. Zhang, D. Wang, C. Deng, Optimal Preparation Process for Fatigue Specimens Treated by Ultrasonic Peening, Experimental Techniques, 42(2) (2017) 199-207.
[17] A. Tridello, D.S. Paolino, G. Chiandussi, M. Rossetto, Analytical Design of Gigacycle Fatigue Specimens for Size Effect Evaluation, Key Engineering Materials, 577-578 (2013) 369-372.
[18] A. Tridello, D.S. Paolino, M. Rossetto, Ultrasonic VHCF Tests on Very Large Specimens with Risk-Volume Up to 5000 mm3, Applied Sciences, 10(7) (2020).
[19] M. Aghaei, S. Amini, Thermo-elastic heating in VHCF specimen, in: Eighth International Conference on Very High Cycle Fatigue (VHCF8), Online & On-demand 2021, pp. 1-3.
[20] S. Amini, M. Aghaei, Study the Fatigue Behavior of AISI 1045 Steel Using Ultrasonic Fatigue Test Machine, Amirkabir Journal of Mechanical Engineering, 51(5) (2019) 1017-1024.