[1] W. Globocan, Estimated cancer incidence, mortality and prevalence worldwide in 2012, Int Agency Res Cancer, (2012).
[2] M. Souri, M. Soltani, F.M. Kashkooli, M.K. Shahvandi, Engineered strategies to enhance tumor penetration of drug-loaded nanoparticles, Journal of Controlled Release, 341 (2022) 227-246.
[3] M. Souri, M. Soltani, F.M. Kashkooli, M.K. Shahvandi, M. Chiani, F.S. Shariati, M.R. Mehrabi, L.L. Munn, Towards principled design of cancer nanomedicine to accelerate clinical translation, Materials Today Bio, (2022) 100208.
[4] M. Aghamirsalim, M. Mobaraki, M. Soltani, M. Kiani Shahvandi, M. Jabbarvand, E. Afzali, K. Raahemifar, 3D Printed Hydrogels for Ocular Wound Healing, Biomedicines, 10(7) (2022) 1562.
[5] F.M. Kashkooli, M. Soltani, M. Souri, C. Meaney, M. Kohandel, Nexus between in silico and in vivo models to enhance clinical translation of nanomedicine, Nano Today, 36 (2021) 101057.
[6] F.M. Kashkooli, M. Soltani, M. Souri, Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies, Journal of controlled release, 327 (2020) 316-349.
[7] J.Y. Oh, H.S. Kim, L. Palanikumar, E.M. Go, B. Jana, S.A. Park, H.Y. Kim, K. Kim, J.K. Seo, S.K. Kwak, Cloaking nanoparticles with protein corona shield for targeted drug delivery, Nature communications, 9(1) (2018) 1-9.
[8] M. Soltani, F. Moradi Kashkooli, M. Souri, S. Zare Harofte, T. Harati, A. Khadem, M. Haeri Pour, K. Raahemifar, Enhancing clinical translation of cancer using nanoinformatics, Cancers, 13(10) (2021) 2481.
[9] D. Gewirtz, A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin, Biochemical pharmacology, 57(7) (1999) 727-741.
[10] P.K. Singal, N. Iliskovic, Doxorubicin-induced cardiomyopathy, New England Journal of Medicine, 339(13) (1998) 900-905.
[11] W.M. Saltzman, Drug delivery: engineering principles for drug therapy, Oxford University Press, 2001.
[12] S.S. Legha, R.S. BENJAMIN, B. MACKAY, M. EWER, S. WALLACE, M. VALDIVIESO, S.L. RASMUSSEN, G.R. BLUMENSCHEIN, E.J. FREIREICH, Reduction of doxorubicin cardiotoxicity by prolonged continuous intravenous infusion, Annals of internal medicine, 96(2) (1982) 133-139.
[13] G. Hortobagyi, D. Frye, A. Buzdar, M. Ewer, G. Fraschini, V. Hug, F. Ames, E. Montague, C. Carrasco, B. Mackay, Decreased cardiac toxicity of doxorubicin administered by continuous intravenous infusion in combination chemotherapy for metastatic breast carcinoma, Cancer, 63(1) (1989) 37-45.
[14] A.W. El-Kareh, T.W. Secomb, A mathematical model for comparison of bolus injection, continuous infusion, and liposomal delivery of doxorubicin to tumor cells, Neoplasia, 2(4) (2000) 325-338.
[15] L.T. Baxter, R.K. Jain, Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection, Microvascular research, 37(1) (1989) 77-104.
[16] R.K. Jain, L.T. Baxter, Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure, Cancer research, 48(24_Part_1) (1988) 7022-7032.
[17] M. Soltani, P. Chen, Numerical modeling of fluid flow in solid tumors, PloS one, 6(6) (2011) e20344.
[18] M. Soltani, P. Chen, Effect of tumor shape and size on drug delivery to solid tumors, Journal of biological engineering, 6(1) (2012) 1-15.
[19] L. Akkari, A. Lujambio, Role of Tumor Microenvironment in Hepatocellular Carcinoma Resistance, in: Resistance to Molecular Therapies for Hepatocellular Carcinoma, Springer, 2017, pp. 45-64.
[20] J. Folkman, M. Klagsbrun, Angiogenic factors, Science, 235(4787) (1987) 442-447.
[21] T. Anada, J. Fukuda, Y. Sai, O. Suzuki, An oxygen-permeable spheroid culture system for the prevention of central hypoxia and necrosis of spheroids, Biomaterials, 33(33) (2012) 8430-8441.
[22] L. Jakobsson, C.A. Franco, K. Bentley, R.T. Collins, B. Ponsioen, I.M. Aspalter, I. Rosewell, M. Busse, G. Thurston, A. Medvinsky, Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting, Nature cell biology, 12(10) (2010) 943-953.
[23] H. Hashizume, P. Baluk, S. Morikawa, J.W. McLean, G. Thurston, S. Roberge, R.K. Jain, D.M. McDonald, Openings between defective endothelial cells explain tumor vessel leakiness, The American journal of pathology, 156(4) (2000) 1363-1380.
[24] M.R. Junttila, F.J. De Sauvage, Influence of tumour micro-environment heterogeneity on therapeutic response, Nature, 501(7467) (2013) 346-354.
[25] P. Carmeliet, R.K. Jain, Angiogenesis in cancer and other diseases, nature, 407(6801) (2000) 249-257.
[26] R.K. Jain, R.T. Tong, L.L. Munn, Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model, Cancer research, 67(6) (2007) 2729-2735.
[27] K.-A. Norton, A.S. Popel, Effects of endothelial cell proliferation and migration rates in a computational model of sprouting angiogenesis, Scientific reports, 6(1) (2016) 1-10.
[28] A.R. Anderson, M.A. Chaplain, S. McDougall, A hybrid discrete-continuum model of tumour induced angiogenesis, in: Modeling Tumor Vasculature, Springer, 2012, pp. 105-133.
[29] F. Milde, M. Bergdorf, P. Koumoutsakos, A hybrid model for three-dimensional simulations of sprouting angiogenesis, Biophysical journal, 95(7) (2008) 3146-3160.
[30] M. Souri, F. Moradi Kashkooli, M. Soltani, Analysis of magneto-hyperthermia duration in nano-sized drug delivery system to solid tumors using intravascular-triggered thermosensitive-liposome, Pharmaceutical Research, 39(4) (2022) 753-765.
[31] M. Kiani Shahvandi, M. Soltani, F. Moradi Kashkooli, B. Saboury, A. Rahmim, Spatiotemporal multi-scale modeling of radiopharmaceutical distributions in vascularized solid tumors, Scientific reports, 12(1) (2022) 1-18.
[32] S. Eikenberry, A tumor cord model for doxorubicin delivery and dose optimization in solid tumors, Theoretical Biology and Medical Modelling, 6(1) (2009) 1-20.
[33] M. Soltani, M. Sefidgar, M. Casey, R. Wahl, R. Subramaniam, A. Rahmim, Comprehensive modeling of the spatiotemporal distribution of PET tracer uptake in solid tumors based on the Convection-Diffusion-Reaction equation, in: 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), IEEE, 2014, pp. 1-12.
[34] T. Stylianopoulos, L.L. Munn, R.K. Jain, Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: from mathematical modeling to bench to bedside, Trends in cancer, 4(4) (2018) 292-319.
[35] J.S. Lazo, K.L. Parker, L. Bruton, Goodman & Gilman's the pharmacological basis of therapeutics, McGraw-Hill Publishing, 2005.
[36] Y.-M.F. Goh, H.L. Kong, C.-H. Wang, Simulation of the delivery of doxorubicin to hepatoma, Pharmaceutical Research, 18(6) (2001) 761-770.
[37] Q. Dai, S. Wilhelm, D. Ding, A.M. Syed, S. Sindhwani, Y. Zhang, Y.Y. Chen, P. MacMillan, W.C. Chan, Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors, ACS nano, 12(8) (2018) 8423-8435.
[38] C. Liu, J. Krishnan, X.Y. Xu, A systems-based mathematical modelling framework for investigating the effect of drugs on solid tumours, Theoretical Biology and Medical Modelling, 8(1) (2011) 1-21.
[39] C. Voutouri, N.D. Kirkpatrick, E. Chung, F. Mpekris, J.W. Baish, L.L. Munn, D. Fukumura, T. Stylianopoulos, R.K. Jain, Experimental and computational analyses reveal dynamics of tumor vessel cooption and optimal treatment strategies, Proceedings of the National Academy of Sciences, 116(7) (2019) 2662-2671.
[40] Y. Boucher, R.K. Jain, Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse, Cancer research, 52(18) (1992) 5110-5114.
[41] T.W. Sheu, M.A. Solovchuk, A.W. Chen, M. Thiriet, On an acoustics–thermal–fluid coupling model for the prediction of temperature elevation in liver tumor, International Journal of Heat and Mass Transfer, 54(17-18) (2011) 4117-4126.
[42] L.T. Baxter, R.K. Jain, Transport of fluid and macromolecules in tumors. IV. A microscopic model of the perivascular distribution, Microvascular research, 41(2) (1991) 252-272.
[43] M.B. Wolf, P.D. Watson, D. Scott 2nd, Integral-mass balance method for determination of solvent drag reflection coefficient, American Journal of Physiology-Heart and Circulatory Physiology, 253(1) (1987) H194-H204.
[44] S. Eikenberry, A tumor cord model for doxorubicin delivery and dose optimization in solid tumors, Theoretical Biology and Medical Modelling, 6(1) (2009) 16.
[45] R.E. Eliaz, S. Nir, C. Marty, F.C. Szoka, Determination and modeling of kinetics of cancer cell killing by doxorubicin and doxorubicin encapsulated in targeted liposomes, Cancer research, 64(2) (2004) 711-718.
[46] C. Liu, J. Krishnan, X.Y. Xu, Investigating the effects of ABC transporter-based acquired drug resistance mechanisms at the cellular and tissue scale, Integrative Biology, 5(3) (2013) 555-568.
[47] M. Soltani, M. Souri, F. Moradi Kashkooli, Effects of hypoxia and nanocarrier size on pH-responsive nano-delivery system to solid tumors, Scientific Reports, 11(1) (2021) 1-12.
[48] M. Souri, M. Soltani, F. Moradi Kashkooli, Computational modeling of thermal combination therapies by magneto-ultrasonic heating to enhance drug delivery to solid tumors, Scientific reports, 11(1) (2021) 1-12.
[49] W. Zhan, X.Y. Xu, A mathematical model for thermosensitive liposomal delivery of doxorubicin to solid tumour, Journal of drug delivery, (2013) 172529.
[50] T. Stylianopoulos, R.K. Jain, Combining two strategies to improve perfusion and drug delivery in solid tumors, Proceedings of the National Academy of Sciences, 110(46) (2013) 18632-18637.
[51] M. Soltani, P. Chen, Numerical modeling of interstitial fluid flow coupled with blood flow through a remodeled solid tumor microvascular network, PloS one, 8(6) (2013) e67025.
[52] T. Hompland, C. Ellingsen, K.M. Øvrebø, E.K. Rofstad, Interstitial fluid pressure and associated lymph node metastasis revealed in tumors by dynamic contrast-enhanced MRI, Cancer research, 72(19) (2012) 4899-4908.