[1] Popov V. N., 2004. “Carbon nanotubes: properties and application”, Materials Science and ngineering Research, 43, pp. 61-102
[2] Rafii-Tabar H., 2004. “Computational modelling of thermo-mechanical and transport properties of carbon nanotubes”, Physics Reports, 390, pp. 235-452.
[3] Eringen, A.C., 1983. “On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves”, Journal of Applied Physics., 54,pp. 4703–4710.
[4] Eringen, A.C., 2002. “Nonlocal Continuum Field Theories”, Springer, New York.
[5] Koiter, W. T., 1964. “Couple Stresses in the Theory of Elasticity”, Royal Netherlands Academy of Sciences,Series B, LXVII,.1 No. 67, pp. 17–44.
[6] Mindlin, R.D., Eshel, N.N., 1968. “On first straingradient theories in linear elasticity”, Int. J. Solids Struct. 4, pp. 109–124.
[7] Yang F, Chong ACM, Lam DCC, Tong P., 2002.“Couple stress based strain gradient theory for elasticity”, Int J Solids Struct., 39, pp. 2731–43.
[8] Reddy J.N., Kim J., 2012. “A nonlinear modified couple stress-based third-order theory of functionally graded plates”, Composite Structures, 94, pp.1128-1143.
[9] Pradhan SC, Phadikar JK., 2009. “Nonlocal elasticity theory for vibration of nanoplates”, J. Sound Vib., 325,pp. 206–23.
[10] Alibeigloo A., 2011. “Free vibration analysis of nanoplate using three-dimensional theory of elasticity”,Acta Mech, 222, pp. 149–159.
[11] Setoodeh AR, Malekzadeh P, Vosoughi AR., 2011.“Nonlinear free vibration of orthotropic graphene sheets using nonlocal mindlin plate theory”, Proc Inst Mech Eng, Part C: J Mech Eng Sci, 226, No.7, pp.1896-1906.
[12] K.F. Wang, B.L. Wang, 2013. “Effect of surface energy on the non-linear postbuckling behavior of nanoplates”, International Journal of Non-Linear Mechanics, 55, pp19-24.
[13] Pouya Asgharifard Sharabiani, Mohammad Reza Haeri Yazdi, 2013. “Nonlinear free vibrations of functionally graded nanobeams with surface effects”,Composites: Part B, 45, pp.581-586.
[14] Rajarshi Maitra, Supratik Bose, 2012. “Post Buckling Behaviour of a Nanobeam considering both the surface and nonlocal effects”, International Journal of Advancements in Research & Technology, 1, pp.1-5.
[15] Ali Farajpour, Alireza ArabSolghar, Alireza Shahidi, 2013. “Postbuckling analysis of multilayered graphene sheets under non-uniform biaxial compression”, Physica E, 47, pp.197-206.
[16] W. Lestari, S. Hanagud, 2001. “Nonlinear vibration of buckled beams: some exact solutions”,International Journal of Solids and Structures, 38, pp.4741—4757.
[17] Hamed Farokhi, Mergen H. Ghayesh, Marco Amabili,2013. “Nonlinear resonant behavior of microbeams over the buckled state”, Appl. Phys. A, 113, pp.297-307.
[18] Ventsel E., Krauthammer T., 2001. “Thin Plates and Shells: Theory, Analysis and Applications”, Marcell Dekker Inc.
[19] Robert M. Jones, 1999. “Mechanics of Composite Materials: 2nd Edition”, Taylor & Francis, Inc.
[20] Reddy J. N., 2007. “Theory and Analysis of Elastic plates and Shels: 2nd Edition”, Taylor & Francis Group.
[21] Kelly S.G., 2012. “Mechanical Vibrations: Theory and Applications SI.”, Cengage Learning.
[22] Byrd PF, Friedman MD., 1991. “Handbook of elliptic integrals for engineers and scientists”, Berlin:Springer.
[23] Abramowitz M, Stegun I., 1965. “Handbook of Mathematical Functions, Chapter 17.”, Dover Publications Inc.: New York.
[24] Ansari R., Rajabiehfard R., Arash B., 2010. “Nonlocal finite element model for vibrations of embedded multilayered graphene sheets”, Comput. Mater. Sci., 49,pp.831–838.
[25] Nayfeh A.H., Mook D.T., 1995. “Nonlinear oscillations”, New York: Wiley.
[26] Lau, S. L., Cheung, Y. K., and Wu, S. Y., 1984.“Internal Resonance by Amplitude Incremental Finite Element”, ASME JOURNAL OF APPLIED MECHANICS, 51, pp. 845-851.
[27] S. Sridhar, D. T. Mookand A. H. Nayfeh., 1975.“NON.LINEAR RESONANCES IN THE FORCED RESPONSES OF PLATES, PART I: SYMMETRIC RESPONSES OF CIRCULAR PLATES”, Journal of Sound and Vibration, 41, pp.359-373.
[28] D. W. Lobitz, A. H. Nayfeh and D. T. Mook, 1977.“NON-LINEAR ANALYSIS OF VIBRATIONS OF IRREGULAR PLATES”, Journal of Sound and Vibration, 50, pp.203-217.
[29] P. Ribeiro, M. Petyt, 1999. “Non-linear vibration of beams with internal resonance by the hierarchical finite-element method”, Journal of Sound and Vibration, 224, pp.591-624.