[1] D. Salimi-Majd, M. Helmi, B. Mohammadi, Damage growth prediction of unidirectional layered composites under cyclic loading using an energy based model, mdrsjrns, 15(7) (2015) 173-180.
[2] S.A. Arhamnamazi, N. Banimostafa Arab, A. Refahi Oskouei, F. Aymerich, Impact Area Assessment in the Carbon Fiber Reinforced Polymer Composite using Radiography and Ultrasonic C-scan testing methods, mdrsjrns, 18(3) (2018) 332-338.
[3] Y. Chai, Y. Wang, Z. Yousaf, M. Storm, N.T. Vo, K. Wanelik, T.L. Burnett, P. Potluri, P.J. Withers, Following the effect of braid architecture on performance and damage of carbon fibre/epoxy composite tubes during torsional straining, Composites Science and Technology, 200 (2020) 108451.
[4] J.-q. Xuan, D.-s. Li, L. Jiang, Fabrication, properties and failure of 3D stitched carbon/epoxy composites with no stitching fibers damage, Composite Structures, 220 (2019) 602-607.
[5] A. Yudhanto, N. Watanabe, Y. Iwahori, H. Hoshi, Compression properties and damage mechanisms of stitched carbon/epoxy composites, Composites Science and Technology, 86 (2013) 52-60.
[6] Y.A. Dzenis, D.H. Reneker, Delamination resistant composites prepared by small diameter fiber reinforcement at ply interfaces, in, US Patent, 2001.
[7] M. Saeedifar, H. Saghafi, R. Mohammadi, D. Zarouchas, Temperature dependency of the toughening capability of electrospun PA66 nanofibers for carbon/epoxy laminates, Composites Science and Technology, 216 (2021) 109061.
[8] R. Mohammadi, M. Ahmadi Najafabadi, H. Saghafi, M. Saeedifar, D. Zarouchas, A quantitative assessment of the damage mechanisms of CFRP laminates interleaved by PA66 electrospun nanofibers using acoustic emission, Composite Structures, 258 (2021) 113395.
[9] S. Cai, Y. Li, H.-Y. Liu, Y.-W. Mai, Damping properties of carbon fiber reinforced composites hybridized with polysulfone (PSF)/cellulose nanocrystal (CNC) interleaves, Composites Science and Technology, 213 (2021) 108904.
[10] K. Magniez, C. De Lavigne, B.L. Fox, The effects of molecular weight and polymorphism on the fracture and thermo-mechanical properties of a carbon-fibre composite modified by electrospun poly (vinylidene fluoride) membranes, Polymer, 51(12) (2010) 2585-2596.
[11] P.K. Barzoki, A.M. Rezadoust, M. Latifi, Tunable effect of polyvinyl butyral nanofiber veil on fracture toughness of glass reinforced phenolic composites manufactured with out of autoclave method, Polymer Testing, 71 (2018) 255-261.
[12] H. Saghafi, G. Minak, A. Zucchelli, T.M. Brugo, H. Heidary, Comparing various toughening mechanisms occurred in nanomodified laminates under impact loading, Composites Part B: Engineering, 174 (2019) 106964.
[13] P.K. Barzoki, A.M. Rezadoust, M. Latifi, H. Saghafi, G. Minak, Effect of nanofiber diameter and arrangement on fracture toughness of out of autoclave glass/phenolic composites - Experimental and numerical study, Thin-Walled Structures, 143 (2019) 106251.
[14] H. Saghafi, A.R. Moallemzadeh, A. Zucchelli, T.M. Brugo, G. Minak, Shear mode of fracture in composite laminates toughened by polyvinylidene fluoride nanofibers, Composite Structures, 227 (2019) 111327.
[15] M. Ahmadi Najafabadi, M. Sedighi, M. Salehi, H. Hossini Toudeshky, Investigation and monitoring of delamination in FMLs under mode I and II loading with FEM and AE, Modares Mechanical Engineering, 15(9) (2015) 78-86.
[16] B. Mohammadi, D. Salimi-Majd, M.H. Ali-Bakhshi, Analysis of composite skin/stringer debonding and failure under static loading using cohesive zone model, Modares Mechanical Engineering, 14(10) (2015) 17-25.
[17] G. Giuliese, R. Palazzetti, F. Moroni, A. Zucchelli, A. Pirondi, Cohesive zone modelling of delamination response of a composite laminate with interleaved nylon 6,6 nanofibres, Composites Part B: Engineering, 78 (2015) 384-392.
[18] H. Saghafi, S.R. Ghaffarian, D. Salimi-Majd, H.A. Saghafi, Investigation of interleaf sequence effects on impact delamination of nano-modified woven composite laminates using cohesive zone model, Composite Structures, 166 (2017) 49-56.
[19] T. Brugo, G. Minak, A. Zucchelli, X.T. Yan, J. Belcari, H. Saghafi, R. Palazzetti, Study on Mode I fatigue behaviour of Nylon 6,6 nanoreinforced CFRP laminates, Composite Structures, 164 (2017) 51-57.
[20] ASTM Standard, D5528-01, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, in, ASTM International, West Conshohocken, PA, 2007.
[21] HexPly® 8552 Epoxy matrix (180°C/356°F curing matrix) in FTA 072e. Hexcel Composites Publication, 2013.
[22] R. Mohammadi, M.A. Najafabadi, H. Saghafi, D. Zarouchas, Fracture and fatigue behavior of carbon/epoxy laminates modified by nanofibers, Composites Part A: Applied Science and Manufacturing, 137 (2020) 106015.
[23] V. Arumugam, C. Suresh Kumar, C. Santulli, F. Sarasini, A. Joseph Stanley, A Global Method for the Identification of Failure Modes in Fiberglass Using Acoustic Emission, Journal of Testing and Evaluation, 39(5)(2011).
[24] ASTM Standard, D6115−97, Standard Test Method for Mode I Fatigue Delamination Growth Onset of Unidirectional Fiber-Reinforced Polymer Matrix Composites, in: ASTM International, ASTM International, United States, 2011.
[25] M. Moradi, A. Broer, J. Chiachío, R. Benedictus, T.H. Loutas, D. Zarouchas, Intelligent health indicator construction for prognostics of composite structures utilizing a semi-supervised deep neural network and SHM data, Engineering Applications of Artificial Intelligence, 117 (2023) 105502.
[26] A. Broer, G. Galanopoulos, R. Benedictus, T. Loutas, D. Zarouchas, Fusion-based damage diagnostics for stiffened composite panels, Structural Health Monitoring, 21(2) (2022) 613-639.
[27] D.S. Dugdale, Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, 8(2) (1960) 100-104.
[28] A. Turon, Simulation of delamination in composites under quasi-static and fatigue loding usuin cohesive zone models, Ph.D thesis, Doctoral thesis, University of Girona, 2006.
[29] P.W. Harper, S.R. Hallett, Cohesive zone length in numerical simulations of composite delamination, Engineering Fracture Mechanics, 75(16) (2008) 4774-4792.
[30] B. Roshanfar, Progressive delamination analysis of composite laminates under repeated out of plane impact loading, Amirkabir University of Technology, 2014.
[31] J.B. Babu, Predicting the fatigue behaviour of matrices and fiber composites based upon modified epoxy polymers, Imperial College, UK, 2012.
[32] H. Saghafi, A. Zucchelli, R. Palazzetti, G. Minak, The effect of interleaved composite nanofibrous mats on delamination behavior of polymeric composite materials, Composite Structures, 109 (2014) 41-47.
[33] H. Saghafi, M. Fotouhi, G. Minak, Improvement of the Impact Properties of Composite Laminates by Means of Nano-Modification of the Matrix—A Review, Applied Sciences, 8(12)(2018).
[34] P.P. Camanho, C.G. Dávila, Mixed-mode decohesion finite elements for the simulation of delamination in composite materials, NASA-Technical paper, 211737(1) (2002) 33.
[35] M. Arai, J.-i. Hirokawa, Y. Hanamura, H. Ito, M. Hojo, M. Quaresimin, Characteristic of mode I fatigue crack propagation of CFRP laminates toughened with CNF interlayer, Composites Part B: Engineering, 65 (2014) 26-33.