[1] M.A. Diaz, M.A. Solovchuk, T.W. Sheu, A conservative numerical scheme for modeling nonlinear acoustic propagation in thermoviscous homogeneous media, Journal of Computational Physics, 363 (2018) 200-230.
[2] W.Y. Tey, H. Alehossein, Z. Qin, K.M. Lee, H.S. Kang, K.Q. Lee, On stability of time marching in numerical solutions of rayleigh-plesset equation for ultrasonic cavitation, in: IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2020, pp. 012117.
[3] T.J. Mason, Developments in ultrasound—non-medical, Progress in biophysics and molecular biology, 93(1-3) (2007) 166-175.
[4] in: I.A.R.C, World Health Organization, https://gco.iarc.fr/tomorrow/en/dataviz/isotype, 2021.
[5] S. Vaezy, M. Andrew, P. Kaczkowski, L. Crum, Image- guided acoustic therapy, Annual review of biomedical engineering, 3(1) (2001) 375-390.
[6] S. Chatillon, R. Loyet, L. Brunel, F. Chavrier, N. Guillen, S. Le Berre, Applications of intensive HIFU simulation based on surrogate models using the CIVA HealthCare platform, in: Journal of Physics: Conference Series, IOP Publishing, 2021, pp. 012007.
[7] Z. Izadifar, Z. Izadifar, D. Chapman, P. Babyn, An introduction to high intensity focused ultrasound: systematic review on principles, devices, and clinical applications, Journal of clinical medicine, 9(2) (2020) 460.
[8] G.t. Haar, Physics today, ACOUSTIC SURGERY, 54, no.12 (2001) 29-34.
[9] E.A. Stewart, W.M. Gedroyc, C.M. Tempany, B.J. Quade, Y. Inbar, T. Ehrenstein, A. Shushan, J.T. Hindley, R.D. Goldin, M. David, Focused ultrasound treatment of uterine fibroid tumors: safety and feasibility of a noninvasive thermoablative technique, American journal of obstetrics and gynecology, 189(1) (2003) 48-54.
[10] P. Hariharan, M.R. Myers, R.K. Banerjee, HIFU procedures at moderate intensities—effect of large blood vessels, Physics in Medicine & Biology, 52(12) (2007) 3493.
[11] M. Marinova, M. Rauch, M. Mücke, R. Rolke, M.A. Gonzalez-Carmona, J. Henseler, H. Cuhls, L. Radbruch, C.P. Strassburg, L. Zhang, High-intensity focused ultrasound (HIFU) for pancreatic carcinoma: evaluation of feasibility, reduction of tumour volume and pain intensity, European radiology, 26(11) (2016) 4047-4056.
[12] J.E. Kennedy, High-intensity focused ultrasound in the treatment of solid tumours, Nature reviews cancer, 5(4) (2005) 321-327.
[13] J. Huang, R.G. Holt, R.O. Cleveland, R.A. Roy, Experimental validation of a tractable numerical model for focused ultrasound heating in flow-through tissue phantoms, The Journal of the Acoustical Society of America, 116(4) (2004) 2451-2458.
[14] M. Sadeghi-Goughari, S. Jeon, H.-J. Kwon, Enhancing thermal effect of focused ultrasound therapy using gold nanoparticles, IEEE Transactions on NanoBioscience, 18(4) (2019) 661-668.
[15] J.-J. Li, G.-L. Xu, M.-F. Gu, G.-Y. Luo, Z. Rong, P.-H. Wu, J.-C. Xia, Complications of high intensity focused ultrasound in patients with recurrent and metastatic abdominal tumors, World journal of gastroenterology: WJG, 13(19) (2007) 2747.
[16] H. Furusawa, K. Namba, S. Thomsen, F. Akiyama, A. Bendet, C. Tanaka, Y. Yasuda, H. Nakahara, Magnetic resonance–guided focused ultrasound surgery of breast cancer: reliability and effectiveness, Journal of the American College of Surgeons, 203(1) (2006) 54-63.
[17] S.B. Devarakonda, M.R. Myers, M. Lanier, C. Dumoulin, R.K. Banerjee, Assessment of gold nanoparticle-mediated-enhanced hyperthermia using MR-guided high-intensity focused ultrasound ablation procedure, Nano letters, 17(4) (2017) 2532-2538.
[18] K. Kaczmarek, T. Hornowski, M. Kubovcikova, M. Timko, M. Koralewski, A. Józefczak, Heating Induced by Therapeutic Ultrasound in the Presence of Magnetic Nanoparticles, ACS Applied Materials & Interfaces, 10 (2018).
[19] D. Kessel, R. Jeffers, J. Fowlkes, C. Cain, Porphyrin- induced enhancement of ultrasound cytotoxicity, International journal of radiation biology, 66(2) (1994) 221-228.
[20] M. Sadeghi-Goughari, S. Jeon, H.-J. Kwon, Analytical and Numerical Model of High Intensity Focused Ultrasound Enhanced with Nanoparticles, IEEE Transactions on Biomedical Engineering, 67(11) (2020) 3083-3093.
[21] Y. Kaneko, T. Maruyama, K. Takegami, T. Watanabe, H. Mitsui, K. Hanajiri, H. Nagawa, Y. Matsumoto, Use of a microbubble agent to increase the effects of high intensity focused ultrasound on liver tissue, European radiology, 15(7) (2005) 1415-1420.
[22] A. Clark, S. Bonilla, D. Suo, Y. Shapira, M. Averkiou, Microbubble-Enhanced Heating: Exploring the Effect of Microbubble Concentration and Pressure Amplitude on High-Intensity Focused Ultrasound Treatments, Ultrasound in Medicine & Biology, 47(8) (2021) 2296-2309.
[23] M. Wang, Y. Lei, Y. Zhou, High-intensity focused ultrasound (HIFU) ablation by the frequency chirps: Enhanced thermal field and cavitation at the focus, Ultrasonics, 91 (2019) 134-149.
[24] A. Gnanaskandan, C.-T. Hsiao, G. Chahine, Modeling of microbubble-enhanced high-intensity focused ultrasound, Ultrasound in medicine & biology, 45(7) (2019) 1743-1761.
[25] R.S. Cobbold, Foundations of biomedical ultrasound, Oxford university press, 2006.
[26] C. Multiphysics, Acoustic Module–User’s Guide, (fall 2020).
[27] U. Parlitz, V. Englisch, C. Scheffczyk, W. Lauterborn, Bifurcation structure of bubble oscillators, The Journal of the Acoustical Society of America, 88(2) (1990) 1061- 1077.
[28] H.H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm, Journal of applied physiology, 1(2) (1948) 93-122.
[29] X. Zou, H. Dong, S.-Y. Qian, Influence of dynamic tissue properties on temperature elevation and lesions during HIFU scanning therapy: Numerical simulation, Chinese Physics B, 29(3) (2020) 034305.
[30] C.H. Farny, R.G. Holt, R.A. Roy, The correlation between bubble-enhanced HIFU heating and cavitation power, IEEE Transactions on Biomedical Engineering, 57(1) (2009) 175-184.
[31] C. Coussios, C. Farny, G. Ter Haar, R. Roy, Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU), International journal of hyperthermia, 23(2) (2007) 105-120.
[32] P.L. Edson, The role of acoustic cavitation in enhanced ultrasound-induced heating in a tissue-mimicking phantom, Boston University, 2001.
[33] M. Sannyal, A.M.M. Mukaddes, Numerical Investigation of Tissue-Temperature Controlled System in Thermal Ablation: A Finite Element Approach, Journal of Applied and Computational Mechanics, 7(3 (In Progress)) (2021) 1826-1835.
[34] M. Sherar, J. Moriarty, M. Kolios, J. Chen, R. Peters, L. Ang, R. Hinks, R. Henkelman, M. Bronskill, W. Kucharcyk, Comparison of thermal damage calculated using magnetic resonance thermometry, with magnetic resonance imaging post-treatment and histology, after interstitial microwave thermal therapy of rabbit brain, Physics in Medicine & Biology, 45(12) (2000) 3563.
[35] P. Namakshenas, A. Mojra, Numerical study of non- Fourier thermal ablation of benign thyroid tumor by focused ultrasound (FU), Biocybernetics and Biomedical Engineering, 39(3) (2019) 571-585.
[36] P. Namakshenas, A. Mojra, Microstructure-based non- Fourier heat transfer modeling of HIFU treatment for thyroid cancer, Computer Methods and Programs in Biomedicine, 197 (2020) 105698.
[37] P. Gupta, A. Srivastava, Numerical analysis of thermal response of tissues subjected to high intensity focused ultrasound, International Journal of Hyperthermia, 35(1) (2018) 419-434.
[38] M.S. Canney, V.A. Khokhlova, O.V. Bessonova, M.R. Bailey, L.A. Crum, Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound, Ultrasound in medicine & biology, 36(2) (2010) 250-267.
[39] D. Toghraie, N. Nasajpour-Esfahani, M. Zarringhalam, N. Shirani, S. Rostami, Blood flow analysis inside different arteries using non-Newtonian Sisko model for application in biomedical engineering, Computer Methods and Programs in Biomedicine, 190 (2020) 105338.
[40] T.D. Mast, Empirical relationships between acoustic parameters in human soft tissues, Acoustics Research Letters Online-arlo - ACOUST RES LETT ONLINE- ARLO, 1 (2000).
[41] H. Shankar, Paul S. Pagel, David S. Warner, Potential Adverse Ultrasound-related Biological Effects: A Critical Review, Anesthesiology, 115(5) (2011) 1109-1124.
[42] S. Tungjitkusolmun, S.T. Staelin, D. Haemmerich, T. Jang-Zern, C. Hong, J.G. Webster, F.T. Lee, D.M. Mahvi, V.R. Vorperian, Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation, IEEE Transactions on Biomedical Engineering, 49(1) (2002) 3-9.
[43] S. gharloghi, M. Gholami, A. Haghparast, V. Dehlaghi, Numerical Study for Optimizing Parameters of High- Intensity Focused Ultrasound-Induced Thermal Field during Liver Tumor Ablation: HIFU Simulator, Iranian Journal of Medical Physics, 14(1) (2017) 15-22.
[44] N. Srivastava, S. Gehlot, S. Singh, B. Singh APPLICATION OF DIFFERENT PARAMETERS FOR SELECTING NORMAL AND ABNORMAL SKIN CHARACTERISTICS IN DETERMINATION OF PRAKRITI IN INFANTS, International Journal of Research in Ayurveda & Pharmacy, 6 (2015) 161-168.
[45] K.M. Shurrab, M. Sayem El-Daher, Simulation and Study of Temperature Distribution in Living Biological Tissues under Laser Irradiation, Journal of Lasers in Medical Sciences, 5(3) (2014) 135-139.
[46] J. Wang, Simulation of Magnetic Nanoparticle Hyperthermia in Prostate Tumors, Johns Hopkins University, Department of Mechanical Engineering, Baltimore, Maryland, 1 (2014) 1-47.
[47] V. Tesař, Microbubble generation by fluidics, Part II: Bubble formation mechanism, Proc. of Colloquium Fluid Dynamics, (2012) 1-20.
[48] H. O’Neil, Theory of focusing radiators, The Journal of the Acoustical Society of America, 21, no. 5 (1949) 516-526.
[49] A. Abdolhosseinzadeh, A. Mojra, K. Hooman, A porous medium approach to thermal analysis of focused ultrasound for treatment of thyroid nodules, Applied Acoustics, 182 (2021) 108236.
[50] M. Mohammadpour, B. Firoozabadi, High intensity focused ultrasound (HIFU) ablation of porous liver: Numerical analysis of heat transfer and hemodynamics, Applied Thermal Engineering, 170 (2020) 115014.