[1] R. Schemenauer, P. Osses, M. Leibbrand, Fog collection evaluation and operational projects in the Hajja governorate, Yemen, (2004).
[2] M. Mileta, D. Beysens, V. Nikolayev, I. Milimouk, C. Owen, M. Muselli, Fog and dew collection projects in Croatia, in: Proc. International Conference on Water Observation and Information System for Decision Support (BALWOIS 2006), Ohrid, Republic of Macedonia, 2006.
[3] R. Ghosh, R. Ganguly, Fog harvesting from cooling towers using metal mesh: Effects of aerodynamic, deposition, and drainage efficiencies, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 234(7) (2019) 994-1014.
[4] R. Ghosh, C. Patra, P. Singh, R. Ganguly, R.P. Sahu, I. Zhitomirsky, I.K. Puri, Influence of metal mesh wettability on fog harvesting in industrial cooling towers, Applied Thermal Engineering, 181 (2020) 115963.
[5] Y. Tu, R. Wang, Y. Zhang, J. Wang, Progress and expectation of atmospheric water harvesting, Joule, 2(8) (2018) 1452-1475.
[6] H. Jarimi, R. Powell, S. Riffat, Review of sustainable methods for atmospheric water harvesting, International Journal of Low-Carbon Technologies, 15(2) (2020) 253-276.
[7] R.S. Schemenauer, P.I. Joe, The collection efficiency of a massive fog collector, Atmospheric Research, 24(1) (1989) 53-69.
[8] J.D. Rivera, Aerodynamic collection efficiency of fog water collectors, Atmospheric Research, 102(3) (2011) 335-342.
[9] L. Caldas, A. Andaloro, G. Calafiore, K. Munechika, S. Cabrini, Water harvesting from fog using building envelopes: part I, Water and Environment Journal, 32(4) (2018) 493-499.
[10] Z. Jia, Z. Zuo, S. Liu, Effect of the angle of the crossed fibres of a fog harvester on its collection efficiency, Journal of Physics: Conference Series, 1600(1) (2020) 012085.
[11] A. Almasi Zefrehei, M. Sheikhzadeh, A.R. Pishevar, Evaluation of the geometrical parameters of collector mesh on the fog collection efficiency, Journal of Industrial Textiles, 51(2) (2022) 3466S-3492S.
[12] S. Tapuchi, A. Kuperman, S. Makarenko, Y. Horen, M. Malinkovski, Obtaining fresh water from atmosphere using electrostatic precipitation: theory, efficiency and limitations, in: E-Water: The Electronic Water Journal, 2010.
[13] M. Reznikov, Electrically enhanced condensation I: effects of corona discharge, IEEE Transactions on Industry Applications, 51(2) (2015) 1137-1145.
[14] M. Reznikov, M. Salazar, M. Lopez, M. Rivera-Sustache, Electrically enhanced harvesting of water vapor from the air, in: Proc. ESA Annual Meeting on Electrostatics, Pomona, California, USA., 2015.
[15] D. Cruzat, C. Jerez-Hanckes, Electrostatic fog water collection, Journal of Electrostatics, 96 (2018) 128-133.
[16] M. Damak, K.K. Varanasi, Electrostatically driven fog collection using space charge injection, Science Advances, 4(6) (2018) eaao5323.
[17] Y. Jiang, C. Machado, S. Savarirayan, N.A. Patankar, K.C. Park, Onset time of fog collection, Soft Matter, 15(34) (2019) 6779-6783.
[18] D.N. Gabyshev, A.A. Fedorets, O. Klemm, Condensational growth of water droplets in an external electric field at different temperatures, Aerosol Science and Technology, 54(12) (2020) 1556-1566.
[19] S.M. Sharifvaghefi, H. Kazerooni, Fog harvesting: combination and comparison of different methods to maximize the collection efficiency, SN Applied Sciences, 3(4) (2021) 516.
[20] X. Yan, Y. Jiang, Numerical evaluation of the fog collection potential of electrostatically enhanced fog collector, Atmospheric Research, 248 (2021) 105251.
[21] Y. Jiang, R. Xu, S. Liu, G. Liu, X. Yan, Electrostatic fog collection mechanism and design of an electrostatic fog collector with nearly perfect fog collection efficiency, Chemical Engineering Science, 247 (2022) 117034.
[22] X. Yan, D. Sun, Corona discharge behavior in foggy environments with flat plate and fin plate electrodes, Chemical Engineering Science, 259 (2022) 117790.