[1] S. Thurner, P. Klimek, R. Hanel, A network-based explanation of why most COVID-19 infection curves are linear, Proceedings of the National Academy of Sciences, 117(37) (2020) 22684-22689.
[2] Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K.S.M. Leung, E.H.Y. Lau, J.Y. Wong, X. Xing, N. Xiang, Y. Wu, C. Li, Q. Chen, D. Li, T. Liu, J. Zhao, M. Liu, W. Tu, C. Chen, L. Jin, R. Yang, Q. Wang, S. Zhou, R. Wang, H. Liu, Y. Luo, Y. Liu, G. Shao, H. Li, Z. Tao, Y. Yang, Z. Deng, B. Liu, Z. Ma, Y. Zhang, G. Shi, T.T.Y. Lam, J.T. Wu, G.F. Gao, B.J. Cowling, B. Yang, G.M. Leung, Z. Feng, Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia, N Engl J Med, 382(13) (2020) 1199-1207.
[3] L. Morawska, D.K. Milton, It is time to address airborne transmission of coronavirus disease 2019 (COVID-19), Clinical Infectious Diseases, 71(9) (2020) 2311-2313.
[4] R. Zhang, Y. Li, A.L. Zhang, Y. Wang, M.J. Molina, Identifying airborne transmission as the dominant route for the spread of COVID-19, Proceedings of the National Academy of Sciences, 117(26) (2020)14857-14863.
[5] Á. Briz-Redón, Á. Serrano-Aroca, A spatio-temporal analysis for exploring the effect of temperature on COVID19 early evolution in Spain, Science of the total environment, 728 (2020) 138811.
[6] Y. Feng, T. Marchal, T. Sperry, H. Yi, Influence of wind and relative humidity on the social distancing effectiveness to prevent COVID-19 airborne transmission: A numerical study, Journal of aerosol science,147 (2020)105585.
[7] M.A. Kohanski, L.J. Lo, M.S. Waring, Review of indoor aerosol generation, transport, and control in the context of COVID‐19, in: International forum of allergy & rhinology, Wiley Online Library, 2020, pp.1173.1179.
[8] C. Sun, Z. Zhai, The efficacy of social distance and ventilation effectiveness in preventing COVID-19 transmission, Sustainable cities and society, 62 (2020) 102390.
[9] W.F. Wells, On air-borne infection. Study II. Droplets and droplet nuclei, American Journal of Hygiene,20 (1934)611-618.
[10] X. Xie, Y. Li, A. Chwang, P. Ho, W. Seto, How far droplets can move in indoor environments--revisiting the Wells evaporation-falling curve, Indoor air, 17(3) (2007) 211-225.
[11] J. Wei, Y. Li, Enhanced spread of expiratory droplets by turbulence in a cough jet, Building and Environment,93 (2015) 86-96.
[12] C. Chen, B. Zhao, Some questions on dispersion of human exhaled droplets in ventilation room: answers from numerical investigation, Indoor Air, 20(2) (2010) 95-111.
[13] R. Bhardwaj, A. Agrawal, Likelihood of survival of coronavirus in a respiratory droplet deposited on a solid surface, Physics of Fluids, 32(6) (2020) 061704.
[14] T. Dbouk, D. Drikakis, On coughing and airborne droplet transmission to humans, Physics of Fluids ,32(5) (2020)053310.
[15] J. Xi, X. Si, Y. Zhou, J. Kim, A. Berlinski, Growth of nasal and laryngeal airways in children: implications in breathing and inhaled aerosol dynamics, Respiratory care, 59(2) (2014) 263-273.
[16] Z. Han, W. Weng, Q. Huang, Characterizations of particle size distribution of the droplets exhaled by sneeze, Journal of the Royal Society Interface, 10(88) (2013) 20130560.
[17] A. Nunn, I. Gregg, New regression equations for predicting peak expiratory flow in adults, British medical journal, 298(6680) (1989) 1068-1070.
[18] G. Busco, S.R. Yang, J. Seo, Y.A. Hassan, Sneezing and asymptomatic virus transmission, Physics of Fluids,32(7) (2020) 073309.
[19] J.K. Gupta, C.H. Lin, Q. Chen, Flow dynamics and characterization of a cough, Indoor air, 19(6) (2009)517-525.
[20] D. Fontes, J. Reyes, K. Ahmed, M. Kinzel, A study of fluid dynamics and human physiology factors driving droplet dispersion from a human sneeze, Physics of Fluids, 32(11) (2020) 111904.
[21] B. Hansen, N. Mygind, How often do normal persons sneeze and blow the nose?, Rhinology, 40(1) (2002) 1012.
[22] S.S. Birring, S. Matos, R.B. Patel, B. Prudon, D.H. Evans, I.D. Pavord, Cough frequency, cough sensitivity and health status in patients with chronic cough, Respiratory medicine, 100(6) (2006)1105.1109.
[23] J. Duguid, The size and the duration of air-carriage of respiratory droplets and droplet-nuclei, Epidemiology & Infection, 44(6) (1946) 471-479.
[24] F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA journal, 32(8) (1994) 1598-1605.
[25] C. Crowe, J. Schwarzkopf, M. Sommerfeld, Y. Tsuji, Multiphase flows with droplets and particles.2011, DOI,10 (2011) b11103.
[26] H. Ounis, G. Ahmadi, J.B. McLaughlin, Brownian diffusion of submicrometer particles in the viscous sublayer, Journal of Colloid and Interface Science, 143(1) (1991) 266-277.
[27] K. Inthavong, J. Tu, C. Heschl, Micron particle deposition in the nasal cavity using the v2–f model, Computers & Fluids, 51(1) (2011) 184-188.
[28] Y. Feng, C. Kleinstreuer, Analysis of non-spherical particle transport in complex internal shear flows, Physics of Fluids, 25(9) (2013) 091904.
[29] W. Ranz, Evaporation from Drops-I and-II, Chem. Eng. Progr, 48 (1952) 141-146,173-180.
[30] S.S. Sazhin, Advanced models of fuel droplet heating and evaporation, Progress in energy and combustion science, 32(2) (2006) 162-214.
[31] P.Y. Hamey, The evaporation of airborne droplets, MSc Thesis, Cranfield Institute of Technology, Bedfordshire, UK, (1982) 48-58.
[32] J.M. Gwaltney Jr, J.O. Hendley, C.D. Phillips, C.R. Bass, N. Mygind, B. Winther, Nose blowing propels nasal fluid into the paranasal sinuses, Clinical infectious diseases, 30(2) (2000) 387-391.