[1] J. Fan, J. Eves, H.M. Thompson, V.V. Toropov, N. Kapur, D. Copley, A. Mincher, Computational fluid dynamic analysis and design optimization of jet pumps, Computers & Fluids, 46(1) (2011) 212-217.
[2] W. Chen, H. Chen, C. Shi, K. Xue, D. Chong, J. Yan, A novel ejector with a bypass to enhance the performance, Applied Thermal Engineering, 93 (2016) 939-946.
[3] C. Li, Y.Z. Li, Investigation of entrainment behavior and characteristics of gas–liquid ejectors based on CFD simulation, Chemical Engineering Science, 66(3) (2011) 405-416.
[4] V. Jorge de Oliveira Marum, L.B. Reis, F.S. Maffei, S. Ranjbarzadeh, I. Korkischko, R.d.S. Gioria, J.R. Meneghini, Performance analysis of a water ejector using Computational Fluid Dynamics (CFD) simulations and mathematical modeling, Energy, 220 (2021) 119779.
[5] H. Bie, C. Li, W. An, Y. Jia, J. Zhu, CFD simulation of the effect of pulsed jet on the performance of liquid-liquid ejector, Chemical engineering transactions, 61 (2017) 865-870.
[6] S. Balamurugan, M.D. Lad, V.G. Gaikar, A.W. Patwardhan, Hydrodynamics and mass transfer characteristics of gas–liquid ejectors, Chemical Engineering Journal, 131(1) (2007) 83-103.
[7] X. Yang, X. Long, Y. Kang, L. Xiao, Effect of diffuser structure and throat length on jet pump performance, Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 46 (2014) 111-115.
[8] K. Banasiak, M. Palacz, A. Hafner, Z. Buliński, J. Smołka, A.J. Nowak, A. Fic, A CFD-based investigation of the energy performance of two-phase R744 ejectors to recover the expansion work in refrigeration systems: An irreversibility analysis, International Journal of Refrigeration, 40 (2014) 328-337.
[9] P. Havelka, V. Linek, J. Sinkule, J. Zahradník, M. Fialova, Effect of the ejector configuration on the gas suction rate and gas hold-up in ejector loop reactors, Chemical Engineering Science, 52(11) (1997) 1701-1713.
[10] X. Yang, X. Long, Y. Kang, L. Xiao, Application of Constant Rate of Velocity or Pressure Change Method to Improve Annular Jet Pump Performance, International Journal of Fluid Machinery and Systems, 6(3) (2013) 137-143.
[11] A. Saker, H. Hassan, Study of the Different Factors That Influence Jet Pump Performance, Open Journal of Fluid Dynamics, 3 (2013) 44-49.
[12] R. Mallela, D. Chatterjee, Numerical investigation of the effect of geometry on the performance of a jet pump, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(7) (2011) 1614-1625.
[13] K. Banasiak, A. Hafner, T. Andresen, Experimental and numerical investigation of the influence of the two-phase ejector geometry on the performance of the R744 heat pump, International Journal of Refrigeration, 35(6) (2012) 1617-1625.
[14] C. Prakeao, S. Takayama, K. Aoki, Y. Nakayama, Numerical prediction on the optimum mixing throat length for drive nozzle position of the central jet pump, Kyoto, Japan, (2002), pp. 26-29.
[15] S. Balamurugan, V.G. Gaikar, A.W. Patwardhan, Effect of ejector configuration on hydrodynamic characteristics of gas–liquid ejectors, Chemical Engineering Science, 63(3) (2008) 721-731.
[16] R.L. Yadav, A.W. Patwardhan, Design aspects of ejectors: Effects of suction chamber geometry, Chemical Engineering Science, 63(15) (2008) 3886-3897.
[17] A. Hammoud, Effect of design and operational parameters on jet pump performance, Elounda, Greece, (2006) 245-252.
[18] I. El-Sawaf, M. Halawa, M. Younes, I. Teaima, Study of the different parameters that influence on the performance of water jet pump, Citeseer, Alexandria, Egypt, (2011).
[19] T.A. Meakhail, I.R. Teaima, A study of the effect of nozzle spacing and driving pressure on the water jet pump performance, International Journal of Engineering Science and Innovative Technology, 2(5) (2013) 373-381.
[20] B. Naik, S. Patel, The Effect of Venturi Design on Jet Pump Performance, Journal for Research, Volume, 2 (2016) 28-23.
[21] C. Prabkeao, K. Aoki, Study on the optimum mixing throat length for drive nozzle position of the central jet pump, Journal of Visualization, 8(4) (2005) 347-355.
[22] M.D.E. Hayek, A.H. Hammoud, Prediction of Liquid Jet Pump Performance Using Computational Fluid Dynamics, Proceedings of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics, Elounda, Greece, (2006) 148-153.
[23] T. Narabayashi, Y. Yamazaki, H. Kobayashi, T. Shakouchi, Flow Analysis for Single and Multi-Nozzle Jet Pump, JSME International Journal Series B Fluids and Thermal Engineering, 49(4) (2006) 933-940.
[24] X. Deng, J. Dong, Z. Wang, J. Tu, Numerical analysis of an annular water–air jet pump with self-induced oscillation mixing chamber, The Journal of Computational Multiphase Flows, 9(1) (2017) 47-53.
[25] J. Yan, C. Lin, W. Cai, H. Chen, H. Wang, Experimental study on key geometric parameters of an R134A ejector cooling system, International Journal of Refrigeration, 67 (2016) 102-108.
[26] A. Hassan, M. Eissa, W. Aissa, Parametric Study of Water Jet Pump Performance, International Journal of Applied Energy Systems, 3 (2021) 35-41.
[27] S. Ghorbanzadeh, E. Lakzian, A numerical comparison between ejector performance with convergence and convergence-divergence primary nozzle, Modares Mechanical Engineering, 16(1) (2016) 324-332.
[28] M. El Gazzar, T. Meakhail, S. Mikhail, Numerical and experimental study of the influence of drag reduction agent (carboxy methyl cellulose) on the central jet pump performance, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221(7) (2007) 1067-1073.
[29] T. Meakhail, I. Teaima, Experimental and numerical studies of the effect of area ratio and driving pressure on the performance of water and slurry jet pumps, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 226(9) (2011) 2250-2266.
[30] D. Yao, K. Lee, M. Ha, C. Cheong, I. Lee, Development of Hybrid Airlift-Jet Pump with Its Performance Analysis, Applied Sciences, 8(9) (2018).
[31] M. Ishii, Thermo-fluid dynamic theory of two-phase flow, Springer Science,75 (1975) 369-371.
[32] B.C. Pak, Y.I. Cho, hydrodynamics and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer, 11(2) (1998) 151-170.
[33] D.A. Drew, S.L. Passman, Theory of Multicomponent Fluid, 1 ed., Springer Science & Business Media, New York,USA, 1999.
[34] C. Kleinstreuer, Microfluidics and nanofluidics: Theory and Selected Applications, 1 ed., John Wiley & Sons, Hoboken, NJ, USA, 2013.
[35] C. Zou, H. Li, P. Tang, D. Xu, Effect of structural forms on the performance of a jet pump for a deep well jet pump, WIT Transactions on Modelling and Simulation, 59 (2015) 257-266.
[36] A. INC, ANSYS Fluent Theory Guide 15, (2013).
[37] J. Fan, J. Eves, H. Thompson, V. Toropov, N. Kapur, D. Copley, A. Mincher, Computational fluid dynamic analysis and design optimization of jet pumps, Computers & Fluids, 46(1) (2011) 212-217.
[38] M. Falsafioon, Z. Aidoun, K. Ameur, Numerical investigation on the effects of internal flow structure on ejector performance, Journal of Applied Fluid Mechanics, 12(6) (2019) 2003-2015.
[39] A. Sheha, M. Nasr, M. Hosien, E. Wahba, Computational and Experimental Study on the Water-Jet Pump Performance, Journal of Applied Fluid Mechanics, 11 (2018) 1013-1020.
[40] Y.n. Qian, Y. Wang, Z. Fang, X. Chen, S.A. Miedema, Numerical Investigation of the Flow Field and Mass Transfer Characteristics in a Jet Slurry Pump, Processes, 9(11) (2021).