[1] Y. Ikada, Challenges in tissue engineering, Journal of the Royal Society Interface, 3(10) (2006) 589-601.
[2] A.J. Salgado, J.M. Oliveira, A. Martins, F.G. Teixeira, N.A. Silva, N.M. Neves, N. Sousa, R.L. Reis, Tissue engineering and regenerative medicine: past, present, and future, International review of neurobiology, 108 (2013) 1-33.
[3] P.K. Chandra, S. Soker, A. Atala, Tissue engineering: Current status and future perspectives, Principles of tissue engineering, (2020) 1-35.
[4] S.M. Giannitelli, D. Accoto, M. Trombetta, A. Rainer, Current trends in the design of scaffolds for computer-aided tissue engineering, Acta biomaterialia, 10(2) (2014) 580-594.
[5] F.P. Melchels, K. Bertoldi, R. Gabbrielli, A.H. Velders, J. Feijen, D.W. Grijpma, Mathematically defined tissue engineering scaffold architectures prepared by stereolithography, Biomaterials, 31(27) (2010) 6909-6916.
[6] J.W. Cho, B.S. Kim, D.H. Yeo, E.J. Lim, S. Sakong, J. Lim, S. Park, Y.H. Jeong, T.G. Jung, H. Choi, 3D‐printed, bioactive ceramic scaffold with rhBMP‐2 in treating critical femoral bone defects in rabbits using the induced membrane technique, Journal of Orthopaedic Research®, 39(12) (2021) 2671-2680.
[7] N. Taniguchi, S. Fujibayashi, M. Takemoto, K. Sasaki, B. Otsuki, T. Nakamura, T. Matsushita, T. Kokubo, S. Matsuda, Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment, Materials Science and Engineering: C, 59 (2016) 690-701.
[8] I. Zein, D. Hutmacher, S. Teoh, K. Tan, Poly (e-caprolactone) scaffolds designed and fabricated by fused deposition modeling, Biomaterials, 23(4) (2002) 1169-1185.
[9] I. Denry, L.T. Kuhn, Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering, Dental Materials, 32(1) (2016) 43-53.
[10] F.P. Melchels, A.M. Barradas, C.A. Van Blitterswijk, J. De Boer, J. Feijen, D.W. Grijpma, Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing, Acta biomaterialia, 6(11) (2010) 4208-4217.
[11] B. Starly, W. Lau, T. Bradbury, W. Sun, Internal architecture design and freeform fabrication of tissue replacement structures, Computer-Aided Design, 38(2) (2006) 115-124.
[12] S. Wang, L. Liu, K. Li, L. Zhu, J. Chen, Y. Hao, Pore functionally graded Ti6Al4V scaffolds for bone tissue engineering application, Materials & Design, 168 (2019) 107643.
[13] F.H. Netter, Atlas of human anatomy, Professional Edition E-Book: including NetterReference. com Access with full downloadable image Bank, Elsevier health sciences, 2014.
[14] V. Iraimudi, S.R. Begum, G. Arumaikkannu, R. Narayanan, Design and fabrication of customised scaffold for femur bone using 3D printing, Advanced Materials Research, 845 (2014) 920-924.
[15] L. Wang, J. Kang, C. Sun, D. Li, Y. Cao, Z. Jin, Mapping porous microstructures to yield desired mechanical properties for application in 3D printed bone scaffolds and orthopaedic implants, Materials & Design, 133 (2017) 62-68.
[16] S.E. Alkhatib, F. Tarlochan, H. Mehboob, R. Singh, K. Kadirgama, W.S.B.W. Harun, Finite element study of functionally graded porous femoral stems incorporating body‐centered cubic structure, Artificial organs, 43(7) (2019) E152-E164.
[17] J. Wieding, A. Wolf, R. Bader, Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone, Journal of the mechanical behavior of biomedical materials, 37 (2014) 56-68.
[18] S. Cahill, S. Lohfeld, P.E. McHugh, Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering, Journal of Materials Science: Materials in Medicine, 20 (2009) 1255-1262.
[19] K. Hazlehurst, C.J. Wang, M. Stanford, Evaluation of the stiffness characteristics of square pore CoCrMo cellular structures manufactured using laser melting technology for potential orthopaedic applications, Materials & Design, 51 (2013) 949-955.
[20] R. Wauthle, S.M. Ahmadi, S.A. Yavari, M. Mulier, A.A. Zadpoor, H. Weinans, J. Van Humbeeck, J.-P. Kruth, J. Schrooten, Revival of pure titanium for dynamically loaded porous implants using additive manufacturing, Materials Science and Engineering: C, 54 (2015) 94-100.
[21] A.A. Oshkour, H. Talebi, S.F. Seyed Shirazi, Y.H. Yau, F. Tarlochan, N.A. Abu Osman, Effect of geometrical parameters on the performance of longitudinal functionally graded femoral prostheses, Artificial organs, 39(2) (2015) 156-164.
[22] N. Sultana, Mechanical and biological properties of scaffold materials, Functional 3D tissue engineering scaffolds, (2018) 1-21.
[23] D. Gautam, V.K. Rao, Nondestructive evaluation of mechanical properties of femur bone, Journal of Nondestructive Evaluation, 40(1) (2021) 22.
[24] H. Montazerian, E. Davoodi, M. Asadi-Eydivand, J. Kadkhodapour, M. Solati-Hashjin, Porous scaffold internal architecture design based on minimal surfaces: a compromise between permeability and elastic properties, Materials & Design, 126 (2017) 98-114.