یک رویکرد فیلترینگ مستقیم جدید مبتنی بر روش مدل چندگانه تعاملی در سامانه ناوبری تلفیقی سامانه موقعیت‌یاب جهانی و سامانه ناوبری اینرسی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده‌ی مهندسی برق، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

در این مقاله، جهت افزایش دقت ناوبری در تلفیق سامانه موقعیت‌یاب جهانی و سامانه ناوبری اینرسی، یک رویکرد فیلترینگ مستقیم جدید به نام فیلتر کالمن توسعه‌یافته ردیابی قوی تصحیح‌شده مدل چندگانه تعاملی طراحی شده است. در ساختار پیشنهادی، ضمن استفاده از معادلات ناوبری اینرسی و معادلات ردیابی به‌منظور بهبود دقت موقعیت و سرعت، برای افزایش دقت زوایای وضعیت، از روش‌های تخمین وضعیت مبتنی بر ژیروسکوپ، شتاب‌سنج و سامانه موقعیت‌یاب جهانی بهره برده شده است. همچنین، به‌منظور مقاوم‌سازی فیلتر کالمن توسعه‌یافته در مقابل خطای مدل‌سازی، از روش ردیابی قوی تصحیح‌شده استفاده شده است. سپس، روش پیشنهادی با استفاده از داده‌های جمع‌آوری‌شده در یک آزمایش میدانی واقعی توسط هواپیما راستی‌آزمایی شد و در ادامه، نتایج روش پیشنهادی با نتایج روش‌های فیلترینگ غیرمستقیم فیلتر کالمن متداول، فیلترینگ مستقیم فیلتر کالمن خنثی و فیلتر کالمن توسعه‌یافته مدل چندگانه تعاملی مقایسه شدند. نتایج به‌دست‌آمده عملکرد دقیق‌تر روش پیشنهادی را در مقایسه با سه روش قبلی در تلفیق سامانه‌های موقعیت‌یاب جهانی و ناوبری اینرسی نشان داده‌اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A New Direct Filtering Approach based on the Interactive Multiple Model Method in the Global Positioning System/Inertial Navigation System Integration

نویسندگان [English]

  • Hossein Heidary Sadrabady
  • Elahe Sadat Abdolkarimi
  • Mohammad Reza Mosavi
Department of Electrical Engineering, Iran University of Science and Technology
چکیده [English]

In this paper, to increase the navigation accuracy in the integrated Global Positioning System and Inertial Navigation System, a new direct filtering approach called Interacting Multiple Model-Refined Strong Tracking Extended Kalman Filter has been developed. In the proposed method, while using inertial navigation equations and tracking equations in order to improve the accuracy of position and velocity, to increase the accuracy of orientation, attitude estimation methods based on the gyroscope, accelerometer, and global positioning system have been used. In addition, in order to enhance the Extended Kalman Filter robustness against modeling error, the Refined Strong Tracking method has been used. The aircraft then verified the proposed method using data collected in a real field experiment. The results of the proposed method were compared with the results of the conventional indirect filtering method Kalman Filter, direct filtering Unscented Kalman Filter, and Interacting Multiple Model - Extended Kalman Filter. The results show the more accurate performance of the proposed method compared to the previous three methods in the Global Positioning System and Inertial Navigation System integration.

کلیدواژه‌ها [English]

  • Global positioning system
  • Inertial navigation system
  • Direct filtering
  • Multiple model estimate
  • Interactive multiple model
[1] A. Noureldin, T.B. Karamat, J. Georgy, Fundamentals of inertial navigation, satellite-based positioning and their integration, Springer Science & Business Media, 2012.
[2] P. Aggarwal, Z. Syed, A. Noureldin, N. El-Sheimy, MEMS-based integrated navigation. Artech House, Inc.: Norwood, MA, USA,  (2010).
[3] D.-J. Jwo, C.-W. Hu, C.-H. Tseng, Nonlinear filtering with IMM algorithm for ultra-tight GPS/INS integration, International Journal of Advanced Robotic Systems, 10(5) (2013) 222.
[4] G. Hu, W. Wang, Y. Zhong, B. Gao, C. Gu, A new direct filtering approach to INS/GNSS integration, Aerospace Science and Technology, 77 (2018) 755-764.
[5] E.S. Abdolkarimi, M.-R. Mosavi, A low-cost integrated MEMS-based INS/GPS vehicle navigation system with challenging conditions based on an optimized IT2FNN in occluded environments, GPS Solutions, 24(4) (2020) 108.
[6] M.M. Amami, The Advantages and Limitations of Low-Cost Single Frequency GPS/MEMS-Based INS Integration, Global Journal of Engineering and Technology Advances, 10(2) (2022) 018-031.
[7] E.S. Abdolkarimi, G. Abaei, A. Selamat, M.R. Mosavi, A hybrid type-2 fuzzy logic system and extreme learning machine for low-cost INS/GPS in high-speed vehicular navigation system, Applied Soft Computing, 94 (2020) 106447.
[8] P. Yan, J. Jiang, F. Zhang, D. Xie, J. Wu, C. Zhang, Y. Tang, J. Liu, An Improved Adaptive Kalman Filter for a Single Frequency GNSS/MEMS-IMU/Odometer Integrated Navigation Module, Remote Sensing, 13(21) (2021) 4317.
[9] C. Ran, X. Cheng, A direct and non-singular UKF approach using euler angle kinematics for integrated navigation systems, Sensors, 16(9) (2016) 1415.
[10] J. Wendel, C. Schlaile, G.F. Trommer, Direct Kalman filtering of GPS/INS for aerospace applications, in:  International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation (KIS2001), 2001.
[11] H. Qi, J.B. Moore, Direct Kalman filtering approach for GPS/INS integration, IEEE Transactions on Aerospace and Electronic Systems, 38(2) (2002) 687-693.
[12] K. Li, B. Hu, L. Chang, Y. Li, Comparison of direct navigation mode and indirect navigation mode for integrated SINS/GPS, Transactions of the Institute of Measurement and Control, 38(1) (2016) 3-13.
[13] C. Jiayao, Z. Dalong, H. Gangtao, L. Zhiyuan, A Method for Lever Arm Estimation in INS/GPS Integration Using Direct Unscented Kalman Filter, in:  2020 IEEE 6th International Conference on Computer and Communications (ICCC), IEEE, 2020, pp. 985-990.
[14] Q. Li, R. Li, K. Ji, W. Dai, Kalman filter and its application, in:  2015 8th International Conference on Intelligent Networks and Intelligent Systems (ICINIS), IEEE, 2015, pp. 74-77.
[15] E.A. Wan, R. Van Der Merwe, The unscented Kalman filter for nonlinear estimation, in:  Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No. 00EX373), Ieee, 2000, pp. 153-158.
[16] B. Gao, S. Gao, Y. Zhong, G. Hu, C. Gu, Interacting multiple model estimation-based adaptive robust unscented Kalman filter, International Journal of Control, Automation and Systems, 15 (2017) 2013-2025.
[17] Z. Yin, G. Li, Y. Zhang, J. Liu, Symmetric-strong-tracking-extended-Kalman-filter-based sensorless control of induction motor drives for modeling error reduction, IEEE Transactions on Industrial Informatics, 15(2) (2018) 650-662.
[18] D.-J. Jwo, S.-H. Wang, Adaptive fuzzy strong tracking extended Kalman filtering for GPS navigation, IEEE Sensors Journal, 7(5) (2007) 778-789.
[19] C.-H. Tseng, C.-W. Chang, D.-J. Jwo, Fuzzy adaptive interacting multiple model nonlinear filter for integrated navigation sensor fusion, Sensors, 11(2) (2011) 2090-2111.
[20] A. Akca, M.Ö. Efe, Multiple model Kalman and Particle filters and applications: A survey, IFAC-PapersOnLine, 52(3) (2019) 73-78.
[21] C. Zhang, C. Guo, D. Zhang, Data fusion based on adaptive interacting multiple model for GPS/INS integrated navigation system, Applied Sciences, 8(9) (2018) 1682.
[22] D.-J. Jwo, S.-Y. Lai, Navigation integration using the fuzzy strong tracking unscented Kalman filter, The Journal of Navigation, 62(2) (2009) 303-322.
[23] H. Qian, D. An, Q. Xia, IMM-UKF based land-vehicle navigation with low-cost GPS/INS, in:  The 2010 IEEE International Conference on Information and Automation, IEEE, 2010, pp. 2031-2035.
[24] X.R. Li, V.P. Jilkov, Survey of maneuvering target tracking: dynamic models, in:  Signal and Data Processing of Small Targets 2000, SPIE, 2000, pp. 212-235.
[25] Z. Wu, M. Yao, H. Ma, W. Jia, Improving accuracy of the vehicle attitude estimation for low-cost INS/GPS integration aided by the GPS-measured course angle, IEEE Transactions on Intelligent Transportation Systems, 14(2) (2012) 553-564.
[26] R. Kottath, P. Narkhede, V. Kumar, V. Karar, S. Poddar, Multiple model adaptive complementary filter for attitude estimation, Aerospace Science and Technology, 69 (2017) 574-581.
[27] Y.-C. Lai, S.-S. Jan, Attitude estimation based on fusion of gyroscopes and single antenna GPS for small UAVs under the influence of vibration, GPS solutions, 15 (2011) 67-77.
[28] M.S. Grewal, A.P. Andrews, Kalman filtering: Theory and Practice with MATLAB, John Wiley & Sons, 2014.