مدل‌سازی و تحلیل ارتعاشات غیرخطی تیر اویلر برنولی تحت تغییر شکل محدود

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه یزد، یزد، ایران

2 دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

با توجه به حضور گسترده تیرها در سازه های مهندسی، درک چگونگی ارتعاشات غیرخطی تیرها در شرایطی که آن‌ها با دامنه زیاد نوسان می کنند، بسیار مفید است. در این مقاله ارتعاشات غیرخطی یک تیر اویلر برنولی تحت فرضیه تغییر شکل محدود بررسی شده است. در این پژوهش برخلاف دیگر مقالات، برای به دست آوردن معادلات حاکم بر حرکت تیر، رابطه میدان-جابجایی بدون تقریب و به‌صورت غیرخطی در نظر گرفته‌شده است. بر این اساس روابط کرنش-جابجایی با استفاده از رابطه گرین لاگرانژ محاسبه شده و با استفاده از روش همیلتون فرم غیرخطی معادلات به‌دست‌آمده است. به‌منظور حل معادله با مشتقات جزیی، با استفاده از روش گالرکین، معادله با مشتقات جزیی به یک معادله دیفرانسیل معمولی تبدیل شده است و درنهایت با استفاده از روش مقیاس های چندگانه حل و با روش عددی مقایسه شده است. برای بررسی دقت روش و صحت سنجی مدل‌سازی، نتایج به‌دست‌آمده با مدل تیر اویلر برنولی خطی و مدل غیرخطی ون-کارمن مقایسه شده است. نتایج به‌دست‌آمده نشان می دهد با توجه به شکل متفاوت معادله دیفرانسیل به‌دست‌آمده در این روش نسبت به دیگر مدل های غیرخطی و خارج شدن شکل کلی آن نسبت به معادله دیفرانسیل دافینگ، پاسخ ارتعاشات سیستم در دامنه های ارتعاشی پایین منطبق با دیگر مدل های غیرخطی است ولی با افزایش دامنه نوسانات فرکانس نوسانات در مدل حاضر نسبت به مدل غیرخطی ون کار من کمتر می شود درحالیکه در دیگر مدل غیرخطی نسبت به مدل ون-کارمن، فرکانس بیشتر می شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling and Nonlinear vibration analysis of Euler-Bernoulli beam under finite deformation

نویسندگان [English]

  • Mohammad Masab Doralizadeh 1
  • Ali Reza Fotouhi 1
  • Mostafa Ghayour 2
1 Department of Mechanical Engineering, Yazd University, Yazd, Iran
2 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

According to the wide presence of beams in engineering structures, it is very useful to understand how the beams vibrate nonlinearly in conditions where they oscillate with a large amplitude. In this paper, the nonlinear vibrations of an Euler-Bernoulli beam under finite deformation are investigated. In this study, unlike other papers, in order to obtain the governing equations of the beam, the field-displacement relationship has been done without approximation. Based on this, the strain-displacement relations are calculated using the Green Lagrange strain, and the nonlinear form of the equations is obtained by using the Hamilton method. In order to solve the partial differential equation, using the Galerkin method, the equation has been converted to an ordinary differential equation and finally solved using the multiple scale method and compared with the Rung-Kutta numerical method. To evaluate the accuracy of the method and the validity of the modelling, the obtained results are compared with the Euler–Bernoulli beam theory and the Von-Karman nonlinear model. The results show that the present method in low vibration amplitudes is consistent with the model of Euler-Bernoulli and Von-Karman, but with increasing amplitude of oscillations, the results of these models will be significantly different from each other, which is as expected.

کلیدواژه‌ها [English]

  • Euler bernoulli beam
  • finite deformation
  • nonlinear vibration
  • large displacement
  • frequency response
[1] S.M. Salapaka, M.V. Salapaka, Scanning probe microscopy, IEEE Control Systems Magazine, 28(2) (2008) 65-83.
[2] A.K. Mohammadi, S.D. Barforooshi, Nonlinear forced vibration analysis of dielectric-elastomer based micro-beam with considering Yeoh hyper-elastic model, Latin American Journal of Solids and Structures, 14 (2017) 643-656.
[3] S. Timoshenko, S. Woinowsky-Krieger, Theory of plates and shells, 2nd Ed, McGraw-hill New York, 1959.
[4] W.-Y. Tseng, Nonlinear vibrations of straight and buckled beams under harmonic excitation, PhD Thesis, Massachusetts Institute of Technology, 1970.
[5] R. Lewandowski, Non-linear free vibrations of beams by the finite element and continuation methods, Journal of Sound and Vibration, 170(5) (1994) 577-593.
[6] M.A. Foda, On non-linear free vibrations of a beam with pinned ends, Journal of King Saud University-Engineering Sciences, 7(1) (1995) 93-106.
[7] C. Wang, K. Lam, X. He, S. Chucheepsakul, Large deflections of an end supported beam subjected to a point load, International Journal of Non-Linear Mechanics, 32(1) (1997) 63-72.
[8] A. Barari, H.D. Kaliji, M. Ghadimi, G. Domairry, Non-linear vibration of Euler-Bernoulli beams, Latin American Journal of Solids and Structures, 8(2) (2011) 139-148.
[9] S. Taeprasartsit, Nonlinear free vibration of thin functionally graded beams using the finite element method, Journal of Vibration and Control, 21(1) (2015) 29-46.
[10] M. Javanmard, M. Bayat, A. Ardakani, Nonlinear vibration of Euler-Bernoulli beams resting on linear elastic foundation, Steel Comp. Struct, 15(4) (2013).
[11] A. Ariana, A.K. Mohammadi, Nonlinear dynamics and bifurcation behavior of a sandwiched micro-beam resonator consist of hyper-elastic dielectric film, Sensors and Actuators A: Physical, 312 (2020) 112113.
[12] H.R. Azarboni, H. Keshavarzpour, M. Rahimzadeh, Nonlocal Analysis of Chaotic Vibration, Primary and Super-Harmonic Resonance of Single Walled Carbon Nanotube Considering Thermal Effects, Amirkabir Journal of Mechanical Engineering, 52(1) (2020) 248-233 (in persian).
[13] E. Reissner, On one-dimensional finite-strain beam theory: the plane problem, Zeitschrift für angewandte Mathematik und Physik ZAMP, 23(5) (1972) 795-804.
[14] J.C. Simo, A finite strain beam formulation. The three-dimensional dynamic problem. Part I, Computer methods in applied mechanics and engineering, 49(1) (1985) 55-70.
[15] H. Irschik, J. Gerstmayr, A continuum mechanics based derivation of Reissner’s large-displacement finite-strain beam theory: the case of plane deformations of originally straight Bernoulli–Euler beams, Acta Mechanica, 206(1) (2009) 1-21.
[16] S. Stoykov, P. Ribeiro, Nonlinear forced vibrations and static deformations of 3D beams with rectangular cross section: the influence of warping, shear deformation and longitudinal displacements, International Journal of Mechanical Sciences, 52(11) (2010) 1505-1521.
[17] A. Ghasemi, F. Taheri-Behrooz, S. Farahani, M. Mohandes, Nonlinear free vibration of an Euler-Bernoulli composite beam undergoing finite strain subjected to different boundary conditions, Journal of Vibration and Control, 22(3) (2016) 799-811.
[18] M. Mohandes, A.R. Ghasemi, Finite strain analysis of nonlinear vibrations of symmetric laminated composite Timoshenko beams using generalized differential quadrature method, Journal of Vibration and Control, 22(4) (2016) 940-954.
[19] R. Fernandes, S.M. Mousavi, S. El-Borgi, Free and forced vibration nonlinear analysis of a microbeam using finite strain and velocity gradients theory, Acta Mechanica, 227(9) (2016) 2657-2670.
[20] S. Mousavi, P. Sharifi, H. Mohammadi, Analysis of Static Pull-in Instability and Nonlinear Vibrations of an Functionally Graded Micro-Resonator Beam, Amirkabir Journal of Mechanical Engineering, 51(1) (2019) 119-132.
[21] M. Li, The finite deformation theory for beam, plate and shell Part I. The two-dimensional beam theory, Computer methods in applied mechanics and engineering, 146(1-2) (1997) 53-63.
[22] M. Li, The finite deformation theory for beam, plate and shell Part III. The three-dimensional beam theory and the FE formulation, Computer methods in applied mechanics and engineering, 162(1-4) (1998) 287-300.
[23] R.Y. Pak, E.J. Stauffer, Nonlinear finite deformation analysis of beams and columns, Journal of engineering mechanics, 120(10) (1994) 2136-2153.
[24] A. Beheshti, Large deformation analysis of strain-gradient elastic beams, Computers & Structures, 177 (2016) 162-175.
[25] F. Najar, A. Nayfeh, E. Abdel-Rahman, S. Choura, S. El-Borgi, Nonlinear analysis of MEMS electrostatic microactuators: primary and secondary resonances of the first mode, Journal of Vibration and Control, 16(9) (2010) 1321-1349.
[26] W.M. Lai, D.H. Rubin, D. Rubin, E. Krempl, Introduction to continuum mechanics, Butterworth-Heinemann, 2009.
[27] S.S. Rao, Vibration of continuous systems, John Wiley & Sons, 2019.
[28] A.H. Nayfeh, D.T. Mook, Nonlinear oscillations, John Wiley & Sons, 2008.
[29] M.H. Ghayesh, M. Amabili, H. Farokhi, Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory, International Journal of Engineering Science, 63 (2013) 52-60.