[1] K. Hu, D.D. Kulkarni, I. Choi, V.V. Tsukruk, Graphene-polymer nanocomposites for structural and functional applications, Progress in polymer science, 39(11) (2014) 1934-1972.
[2] M. Hassanzadeh-Aghdam, Evaluating the effective creep properties of graphene-reinforced polymer nanocomposites by a homogenization approach, Composites Science and Technology, 209 (2021) 108791.
[3] J.A. King, D.R. Klimek, I. Miskioglu, G.M. Odegard, Mechanical properties of graphene nanoplatelet/epoxy composites, Journal of applied polymer science, 128(6) (2013) 4217-4223.
[4] M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content, ACS nano, 3(12) (2009) 3884-3890.
[5] J. Suh, D. Bae, Mechanical properties of polytetrafluoroethylene composites reinforced with graphene nanoplatelets by solid-state processing, Composites Part B: Engineering, 95 (2016) 317-323.
[6] J.-Z. Liang, Effects of graphene nano-platelets size and content on tensile properties of polypropylene composites at higher tension rate, Journal of Composite Materials, 52(18) (2018) 2443-2450.
[7] Z. Shokrieh, M. Shokrieh, Z. Zhao, A modified micromechanical model to predict the creep modulus of polymeric nanocomposites, Polymer Testing, 65 (2018) 414-419.
[8] M.M. Shokrieh, M. Esmkhani, Z. Shokrieh, Z. Zhao, Stiffness prediction of graphene nanoplatelet/epoxy nanocomposites by a combined molecular dynamics–micromechanics method, Computational materials science, 92 (2014) 444-450.
[9] C.M. Hadden, D.R. Klimek-McDonald, E.J. Pineda, J.A. King, A.M. Reichanadter, I. Miskioglu, S. Gowtham, G.M. Odegard, Mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites: Multiscale modeling and experiments, Carbon, 95 (2015) 100-112.
[10] R. Rafiee, A. Eskandariyun, Predicting Young’s modulus of agglomerated graphene/polymer using multi-scale modeling, Composite Structures, 245 (2020) 112324.
[11] H. Al Mahmud, M.S. Radue, S. Chinkanjanarot, G.M. Odegard, Multiscale modeling of epoxy-based nanocomposites reinforced with functionalized and non-functionalized graphene nanoplatelets, Polymers, 13(12) (2021) 1958.
[12] H. Al Mahmud, M.S. Radue, S. Chinkanjanarot, W.A. Pisani, S. Gowtham, G.M. Odegard, Multiscale modeling of carbon fiber-graphene nanoplatelet-epoxy hybrid composites using a reactive force field, Composites Part B: Engineering, 172 (2019) 628-635.
[13] H. Wan, L. Fan, J. Jia, Q. Han, M.Y.A. Jamalabadi, Micromechanical modeling over two length-scales for elastic properties of graphene nanoplatelet/graphite fiber/polyimide composites, Materials Chemistry and Physics, 262 (2021) 124255.
[14] Y. Pan, G. Weng, S. Meguid, W. Bao, Z. Zhu, A. Hamouda, Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites, Mechanics of Materials, 58 (2013) 1-11.
[15] D. Ciprari, K. Jacob, R. Tannenbaum, Characterization of polymer nanocomposite interphase and its impact on mechanical properties, Macromolecules, 39(19) (2006) 6565-6573.
[16] M. Mahmoodi, M. Vakilifard, CNT-volume-fraction-dependent aggregation and waviness considerations in viscoelasticity-induced damping characterization of percolated-CNT reinforced nanocomposites, Composites Part B: Engineering, 172 (2019) 416-435.
[17] M. Vakilifard, M. Mahmoodi, Dynamic moduli and creep damping analysis of short carbon fiber reinforced polymer hybrid nanocomposite containing silica nanoparticle-on the nanoparticle size and volume fraction dependent aggregation, Composites Part B: Engineering, 167 (2019) 277-301.
[18] K.A. Zarasvand, H. Golestanian, Investigating the effects of number and distribution of GNP layers on graphene reinforced polymer properties: Physical, numerical and micromechanical methods, Composites Science and Technology, 139 (2017) 117-126.
[19] S. Boutaleb, F. Zaïri, A. Mesbah, M. Nait-Abdelaziz, J.-M. Gloaguen, T. Boukharouba, J.-M. Lefebvre, Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites, International Journal of Solids and Structures, 46(7-8) (2009) 1716-1726.
[20] H. Chong, S. Hinder, A. Taylor, Graphene nanoplatelet-modified epoxy: effect of aspect ratio and surface functionality on mechanical properties and toughening mechanisms, Journal of materials science, 51(19) (2016) 8764-8790.
[21] X.-Y. Ji, Y.-P. Cao, X.-Q. Feng, Micromechanics prediction of the effective elastic moduli of graphene sheet-reinforced polymer nanocomposites, Modelling and Simulation in Materials Science and Engineering, 18(4) (2010) 045005.
[22] M. Vakilifard, M. Mahmoodi, Three dimensional micromechanical modeling of damping capacity of nano fiber reinforced polymer nanocomposites, Modares Mechanical Engineering, 16(9) (2016) 257-266.
[23] M. Paley, J. Aboudi, Micromechanical analysis of composites by the generalized cells model, Mechanics of materials, 14(2) (1992) 127-139.
[24] J. Aboudi, S.M. Arnold, B.A. Bednarcyk, Micromechanics of composite materials: a generalized multiscale analysis approach, Butterworth-Heinemann, 2012.
[25] J. Aboudi, R. Haj-Ali, A fully coupled thermal–electrical–mechanical micromodel for multi-phase periodic thermoelectrical composite materials and devices, International Journal of Solids and Structures, 80 (2016) 84-95.
[26] Y. Zare, K.Y. Rhee, D. Hui, Influences of nanoparticles aggregation/agglomeration on the interfacial/interphase and tensile properties of nanocomposites, Composites Part B: Engineering, 122 (2017) 41-46.
[27] T.M. Ricks, T.E. Lacy Jr, E.J. Pineda, B.A. Bednarcyk, S.M. Arnold, Computationally efficient High-Fidelity Generalized Method of Cells micromechanics via order-reduction techniques, Composite Structures, 156 (2016) 2-9.
[28] M. Mahmoodi, M. Vakilifard, Interfacial effects on the damping properties of general carbon nanofiber reinforced nanocomposites–a multi-stage micromechanical analysis, Composite Structures, 192 (2018) 397-421.
[29] S. Ben, J. Zhao, T. Rabczuk, A theoretical analysis of interface debonding for coated sphere with functionally graded interphase, Composite Structures, 117 (2014) 288-297.
[30] T. Sabiston, M. Mohammadi, M. Cherkaoui, J. Lévesque, K. Inal, Micromechanics for a long fibre reinforced composite model with a functionally graded interphase, Composites Part B: Engineering, 84 (2016) 188-199.
[31] Y.-N. Rao, H.-L. Dai, Micromechanics-based thermo-viscoelastic properties prediction of fiber reinforced polymers with graded interphases and slightly weakened interfaces, Composite Structures, 168 (2017) 440-455.
[32] A. Melro, P. Camanho, S. Pinho, Generation of random distribution of fibres in long-fibre reinforced composites, Composites Science and Technology, 68(9) (2008) 2092-2102.
[33] M. Yas, M. Heshmati, Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load, Applied Mathematical Modelling, 36(4) (2012) 1371-1394.
[34] L. Walpole, On the overall elastic moduli of composite materials, Journal of the Mechanics and Physics of Solids, 17(4) (1969) 235-251.
[35] M. Hassanzadeh-Aghdam, R. Ansari, M. Mahmoodi, A. Darvizeh, Effect of nanoparticle aggregation on the creep behavior of polymer nanocomposites, Composites Science and Technology, 162 (2018) 93-100.