[1] J. Rosell-Llompart, J. Grifoll, I.G. Loscertales, Electrosprays in the cone-jet mode: from Taylor cone formation to spray development, Journal of Aerosol Science, 125 (2018) 2-31.
[2] J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong, C.M. Whitehouse, Electrospray ionization for mass spectrometry of large biomolecules, Science, 246(4926) (1989) 64-71.
[3] V.A.G. Bailey, Electrostatic Spraying of Liquids., Research Studies Press LTD Taunton, Somerset/John Wiley & Sons Inc, New York 1988, Physik in unserer Zeit, 20(5) (1989) 160-160.
[4] A.M. Gañán-Calvo, J.M. Montanero, Revision of capillary cone-jet physics: Electrospray and flow focusing, Physical review E, 79(6) (2009) 066305.
[5] H. Ueda, K. Takeuchi, A. Kikuchi, Effect of the nozzle tip’s geometrical shape on electrospray deposition of organic thin films, Japanese Journal of Applied Physics, 56(4S) (2017) 04CL05.
[6] J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong, C.M. Whitehouse, Electrospray ionization–principles and practice, Mass Spectrometry Reviews, 9(1) (1990) 37-70.
[7] A.F. Mejia, P. He, D. Luo, M. Marquez, Z. Cheng, Uniform discotic wax particles via electrospray emulsification, Journal of colloid and interface science, 334(1) (2009) 22-28.
[8] T. Si, L. Zhang, G. Li, C.J. Roberts, X. Yin, R.X. Xu, Experimental design and instability analysis of coaxial electrospray process for microencapsulation of drugs and imaging agents, Journal of biomedical optics, 18(7) (2013) 075003.
[9] L. D'Addio, C. Carotenuto, W. Balachandran, A. Lancia, F. Di Natale, Experimental analysis on the capture of submicron particles (PM0. 5) by wet electrostatic scrubbing, Chemical Engineering Science, 106 (2014) 222-230.
[10] R. Coffee, Electrodynamic crop spraying, Outlook on Agriculture, 10(7) (1981) 350-356.
[11] M.R. Morad, A. Rajabi, M. Razavi, S.P. Sereshkeh, A very stable high throughput Taylor cone-jet in electrohydrodynamics, Scientific reports, 6(1) (2016) 1-10.
[12] A. Lee, H. Jin, H.-W. Dang, K.-H. Choi, K.H. Ahn, Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing, Langmuir, 29(44) (2013) 13630-13639.
[13] A. Ieta, J. Primrose, D. Quill, M. Chirita, Characterization of water–ethanol electrosprays, Journal of electrostatics, 69(5) (2011) 461-465.
[14] L.F. Velásquez-García, A.I. Akinwande, M. Martinez-Sanchez, A planar array of micro-fabricated electrospray emitters for thruster applications, Journal of Microelectromechanical Systems, 15(5) (2006) 1272-1280.
[15] A. Jaworek, Micro-and nanoparticle production by electrospraying, Powder technology, 176(1) (2007) 18-35.
[16] H. Xu, J. Wang, B. Li, K. Yu, J. Tian, D. Wang, W. Zhang, Effect of spray modes on electrospray cooling heat transfer of ethanol, Applied Thermal Engineering, 189 (2021) 116757.
[17] N. Bock, T.R. Dargaville, M.A. Woodruff, Electrospraying of polymers with therapeutic molecules: state of the art, Progress in polymer science, 37(11) (2012) 1510-1551.
[18] A. Jaworek, A.T. Sobczyk, Electrospraying route to nanotechnology: An overview, Journal of electrostatics, 66(3-4) (2008) 197-219.
[19] D.N. Nguyen, C. Clasen, G. Van den Mooter, Pharmaceutical applications of electrospraying, Journal of pharmaceutical sciences, 105(9) (2016) 2601-2620.
[20] K. Okuyama, I.W. Lenggoro, Preparation of nanoparticles via spray route, Chemical engineering science, 58(3-6) (2003) 537-547.
[21] J. Xie, J. Jiang, P. Davoodi, M.P. Srinivasan, C.-H. Wang, Electrohydrodynamic atomization: A two-decade effort to produce and process micro-/nanoparticulate materials, Chemical engineering science, 125 (2015) 32-57.
[22] C.U. Yurteri, R.P. Hartman, J.C. Marijnissen, Producing pharmaceutical particles via electrospraying with an emphasis on nano and nano structured particles-A review, KONA Powder and Particle Journal, 28 (2010) 91-115.
[23] F. Mottelay, On the loadstone and magnetic bodies, and on the great magnet the earth; a new physiology, demonstrated with many arguments and experiments—translation of Gilbert W, De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure, in, New York, NY: Wiley, 1893.
[24] J.A. Nollet, X. Part of a letter from Abbè Nollet, of the Royal Academy of Science at Paris, and FRS to Martin Folkes Esq; President of the same, concerning electricity, Philosophical Transactions of the Royal Society of London, 45(486) (1748) 187-194.
[25] L. Rayleigh, XX. On the equilibrium of liquid conducting masses charged with electricity, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 14(87) (1882) 184-186.
[26] J.W. Strutt, I. The influence of electricity on colliding water drops, Proceedings of the royal society of London, 28(190-195) (1879) 405-409.
[27] J.J. Thomson, XXVI. Rays of positive electricity, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21(122) (1911) 225-249.
[28] J. Zeleny, The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces, Physical Review, 3(2) (1914) 69.
[29] J. Zeleny, On the condition of instability of electrified drops, with applications to electrical discharge from liquid points, in: Proc. Camb. Phil. Soc., 1915, pp. 71-83.
[30] J. Zeleny, Instability of electrified liquid surfaces, Physical review, 10(1) (1917) 1.
[31] Ransburg HP, Green HJ, inventors; Harper J Ransburg Co Inc, assignee. Apparatus for spray coating articles. United States patent US 2,247,963. 1941 Jul 1.
[32] G.I. Taylor, Disintegration of water drops in an electric field, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 280(1382) (1964) 383-397.
[33] M. Dole, L.L. Mack, R.L. Hines, R.C. Mobley, L.D. Ferguson, M.B. Alice, Molecular beams of macroions, The Journal of chemical physics, 49(5) (1968) 2240-2249.
[34] A. Ganan-Calvo, J. Davila, A. Barrero, Current and droplet size in the electrospraying of liquids. Scaling laws, Journal of aerosol science, 28(2) (1997) 249-275.
[35] A. Bailey, W. Balachandran, The disruption of electrically charged jets of viscous liquid, Journal of Electrostatics, 10 (1981) 99-105.
[36] A.G. Bailey, Electrostatic atomization of liquids, Science Progress (1933-), (1974) 555-581.
[37] X. Chen, L. Jia, X. Yin, J. Cheng, J. Lu, Spraying modes in coaxial jet electrospray with outer driving liquid, Physics of fluids, 17(3) (2005) 032101.
[38] M. Cloupeau, B. Prunet-Foch, Electrostatic spraying of liquids in cone-jet mode, Journal of electrostatics, 22(2) (1989) 135-159.
[39] S. Jayasinghe, M. Edirisinghe, Effect of viscosity on the size of relics produced by electrostatic atomization, Journal of Aerosol Science, 33(10) (2002) 1379-1388.
[40] S. Jayasinghe, M. Edirisinghe, Obtaining fine droplet relics by electrostatic atomization of viscous liquids, Journal of materials science letters, 21(5) (2002) 371-373.
[41] B.K. Ku, S.S. Kim, Electrospray characteristics of highly viscous liquids, Journal of Aerosol Science, 33(10) (2002) 1361-1378.
[42] M. Mutoh, S. Kaieda, K. Kamimura, Convergence and disintegration of liquid jets induced by an electrostatic field, Journal of Applied Physics, 50(5) (1979) 3174-3179.
[43] G.I. Taylor, Electrically driven jets, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 313(1515) (1969) 453-475.
[44] D.-R. Chen, D.Y. Pui, Experimental investigation of scaling laws for electrospraying: dielectric constant effect, Aerosol science and technology, 27(3) (1997) 367-380.
[45] J.-U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair, D. kishore Mukhopadhyay, C.Y. Lee, M.S. Strano, A.G. Alleyne, J.G. Georgiadis, High-resolution electrohydrodynamic jet printing, Nature materials, 6(10) (2007) 782-789.
[46] D.P. Smith, The electrohydrodynamic atomization of liquids, IEEE transactions on industry applications, (3) (1986) 527-535.
[47] A. Yazdekhasti, A. Pishevar, A. Valipouri, Investigating the effect of electrical conductivity on electrospray modes, Experimental Thermal and Fluid Science, 100 (2019) 328-336.
[48] I. Hayati, A. Bailey, T.F. Tadros, Investigations into the mechanisms of electrohydrodynamic spraying of liquids: I. Effect of electric field and the environment on pendant drops and factors affecting the formation of stable jets and atomization, Journal of Colloid and Interface Science, 117(1) (1987) 205-221.
[49] B.K. Ku, S.S. Kim, Electrohydrodynamic spraying characteristics of glycerol solutions in vacuum, Journal of Electrostatics, 57(2) (2003) 109-128.
[50] Z. Wang, L. Xia, S. Zhan, Experimental study on electrohydrodynamics (EHD) spraying of ethanol with double-capillary, Applied Thermal Engineering, 120 (2017) 474-483.
[51] K. Sung, C.S. Lee, Factors influencing liquid breakup in electrohydrodynamic atomization, Journal of Applied Physics, 96(7) (2004) 3956-3961.
[52] A.M. Gañán-Calvo, The surface charge in electrospraying: its nature and its universal scaling laws, Journal of Aerosol Science, 30(7) (1999) 863-872.
[53] D. Grigoriev, M. Edirisinghe, X. Bao, Deposition of fine silicon carbide relics by electrostatic atomization of a polymeric precursor, Journal of materials research, 17(2) (2002) 487-491.
[54] C. Li, M. Chang, W. Yang, A. Madden, W. Deng, Ballpoint pen tips as robust cone-jet electrospray emitters, Journal of aerosol science, 77 (2014) 10-15.
[55] C. Ryan, K. Smith, M. Alexander, J. Stark, Effect of emitter geometry on flow rate sensitivity to voltage in cone jet mode electrospray, Journal of Physics D: Applied Physics, 42(15) (2009) 155504.
[56] S. Martin, A. Perea, P.L. Garcia-Ybarra, J.L. Castillo, Effect of the collector voltage on the stability of the cone-jet mode in electrohydrodynamic spraying, Journal of Aerosol Science, 46 (2012) 53-63.
[57] P. Naderi, M. Shams, H. Ghassemi, Investigation on the onset voltage and stability island of electrospray in the cone-jet mode using curved counter electrode, Journal of Electrostatics, 98 (2019) 1-10.
[58] M. Shams, P. Naderi, N. Ashgriz, EFFECT OF SEMICYLINDRICAL COUNTER ELECTRODES ON THE CONE-JET MODE OF ELECTROSPRAY, Atomization and Sprays, 30(1) (2020).
[59] R. Bocanegra, D. Galán, M. Márquez, I. Loscertales, A. Barrero, Multiple electrosprays emitted from an array of holes, Journal of Aerosol Science, 36(12) (2005) 1387-1399.
[60] J. Regele, M. Papac, M. Rickard, D. Dunn-Rankin, Effects of capillary spacing on EHD spraying from an array of cone jets, Journal of Aerosol Science, 33(11) (2002) 1471-1479.
[61] A. Ieta, D. Quill, T.E. Doyle, Onset characteristics of aqueous large gap electrosprays, IEEE Transactions on Industry Applications, 46(4) (2010) 1601-1605.
[62] A. Jaworek, A. Krupa, Main modes of electrohydrodynamic spraying of liquids, in: Third International Conference on multiphase Flow, 1998, pp. 8-12.
[63] A. Jaworek, A. Krupa, Classification of the modes of EHD spraying, Journal of aerosol science, 30(7) (1999) 873-893.
[64] J.F. De La Mora, I.G. Loscertales, The current emitted by highly conducting Taylor cones, Journal of Fluid Mechanics, 260 (1994) 155-184.
[65] A. Gomez, K. Tang, Charge and fission of droplets in electrostatic sprays, Physics of Fluids, 6(1) (1994) 404-414.
[66] R. Hartman, D. Brunner, D. Camelot, J. Marijnissen, B. Scarlett, Electrohydrodynamic atomization in the cone–jet mode physical modeling of the liquid cone and jet, Journal of Aerosol science, 30(7) (1999) 823-849.
[67] C. Rosenkilde, A dielectric fluid drop in an electric field, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 312(1511) (1969) 473-494.
[68] P. Brazier‐Smith, Stability and shape of isolated and pairs of water drops in an electric field, The physics of Fluids, 14(1) (1971) 1-6.
[69] M.J. Miksis, Shape of a drop in an electric field, The Physics of Fluids, 24(11) (1981) 1967-1972.
[70] N. Dodgson, C. Sozou, The deformation of a liquid drop by an electric field, Zeitschrift für angewandte Mathematik und Physik ZAMP, 38(3) (1987) 424-432.
[71] J. Sherwood, Breakup of fluid droplets in electric and magnetic fields, Journal of Fluid Mechanics, 188 (1988) 133-146.
[72] J. Sherwood, The deformation of a fluid drop in an electric field: a slender-body analysis, Journal of Physics A: Mathematical and General, 24(17) (1991) 4047.
[73] F.K. Wohlhuter, O.A. Basaran, Shapes and stability of pendant and sessile dielectric drops in an electric field, Journal of Fluid Mechanics, 235 (1992) 481-510.
[74] J. Bacri, D. Salin, Instability of ferrofluid magnetic drops under magnetic field, Journal de Physique Lettres, 43(17) (1982) 649-654.
[75] J.-C. Bacri, D. Salin, Dynamics of the shape transition of a magnetic ferrofluid drop, Journal de Physique Lettres, 44(11) (1983) 415-420.
[76] A. Boudouvis, J. Puchalla, L. Scriven, Magnetohydrostatic equilibria of ferrofluid drops in external magnetic fields, Chemical Engineering Communications, 67(1) (1988) 129-144.
[77] O.A. Basaran, F.K. Wohlhuter, Effect of nonlinear polarization on shapes and stability of pendant and sessile drops in an electric (magnetic) field, Journal of Fluid Mechanics, 244 (1992) 1-16.
[78] O. Sero-Guillaume, D. Zouaoui, D. Bernardin, J. Brancher, The shape of a magnetic liquid drop, Journal of Fluid Mechanics, 241 (1992) 215-232.
[79] H. Li, T.C. Halsey, A. Lobkovsky, Singular shape of a fluid drop in an electric or magnetic field, EPL (Europhysics Letters), 27(8) (1994) 575.
[80] A. Jones, K. Thong, The production of charged monodisperse fuel droplets by electrical dispersion, Journal of Physics D: Applied Physics, 4(8) (1971) 1159.
[81] R. Krpoun, H.R. Shea, A method to determine the onset voltage of single and arrays of electrospray emitters, Journal of Applied Physics, 104(6) (2008) 064511.
[82] R. Krpoun, Micromachined electrospray thrusters for spacecraft propulsion, EPFL, 2009.
[83] A.M. Gañán-Calvo, N. Rebollo-Muñoz, J. Montanero, The minimum or natural rate of flow and droplet size ejected by Taylor cone–jets: physical symmetries and scaling laws, New Journal of Physics, 15(3) (2013) 033035.
[84] Gañán-Calvo, Alfonso M. "Cone-jet analytical extension of Taylor's electrostatic solution and the asymptotic universal scaling laws in electrospraying." Physical review letters 79, no. 2 (1997): 217.
[85] Gañán-Calvo, A. M., J. C. Lasheras, J. Dávila, and A. Barrero. "The electrostatic spray emitted from an electrified conical meniscus." Journal of aerosol science 25, no. 6 (1994): 1121-1142.
[86] Higuera, F. J. "Flow rate and electric current emitted by a Taylor cone." Journal of Fluid Mechanics 484 (2003): 303-327.
[87] Ganan-Calvo, Alfonso M. "On the general scaling theory for electrospraying." Journal of fluid mechanics 507 (2004): 203-212a.
[88] Gañán-Calvo AM, Montanero JM. Revision of capillary cone-jet physics: Electrospray and flow focusing. Physical review E. 2009 Jun 15;79(6):066305.
[89] Gañán-Calvo AM. The surface charge in electrospraying: its nature and its universal scaling laws. Journal of Aerosol Science. 1999 Aug 1;30(7):863-72.