معرفی روشی نوین برای مدیریت باتری های لیتیومی در فرآیندهای شارژ -دشارژ سریع به کمک کنترل پیش بین

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مکانیک، دانشگاه خواجه‌نصیرالدین‌طوسی، تهران، ایران

چکیده

    باتری های لیتیومی باید پیوسته توسط سیستم مدیریت باتری نظارت شوند تا از مشکلات ایمنی همچون گریز حرارتی جلوگیری شود. اکثر روش های مدیریت حرارتی بر اساس طراحی سیستم خنک کاری مطلوب هستند. از سوی دیگر، به دلیل اینکه دمای سطح باتری با سنسور قابل اندازه گیری است، معیار مدیریت حرارتی دمای سطح سلول است.  این در حالی است که دمای داخل باتری می‌تواند در شارژ و دشارژ سریع، بالاتر بوده و سیستم خنک کاری به تنهایی قادر به کنترل دما نباشد. در این مقاله تلاش شده است که مدیریت حرارتی باتری را با سیستم مدیریت الکتریکی باتری ادغام کرد و معیار مدیریت حرارتی، دمای داخل سلول قرار گیرد. برای دستیابی به این هدف، از کنترل پیش بین برای کنترل جریان اعمالی یا کشیده شده از باتری  و از فیلتر کالمن غیرخطی برای تخمین متغیرهای مدل الکتریکی-حرارتی تجربی استفاده شده است. نتایج تجربی و شبیه سازی نشان می‌دهد که استفاده از کنترل پیش بین و تخمین‌گرها‌ی غیر خطی‌ کالمن می‌تواند روشی هوشمند و نوین برای مدیریت همزمان متغیرهای الکتریکی و حرارتی سلول های لیتیومی در فرآیندهای شارژ-دشارژ سریع باشد. همچنین انتظار می‌رود که در روش معرفی شده، با مدیریت متغیر های سلول در فرآیندهای شارژ و دشارژ سریع، ایمنی و طول عمر سلول افزایش یابد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Introducing a novel strategy to manage lithium-ion cells in fast-charge discharge operations with Model predictive controller

نویسندگان [English]

  • milad adl
  • Amir Taghavipour
  • Farshad Torabi
Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran
چکیده [English]

To prevent safety issues such as thermal runaway, lithium-ion batteries must be constantly monitored via an appropriate battery management system. Most thermal management methods are based on designing suitable cooling systems. In addition, since the surface temperature is measurable through a sensor, it is considered the main criterion of thermal management. However, in extremely fast charge-discharge operations, the core temperature can be significantly higher than the surface temperature. Thus, the cooling system may not be able to solely maintain the core temperature in the safe range. The objective of this paper is to combine electrical and thermal management and set the core temperature as the main criterion. To achieve that, model predictive control is implemented to control the supplied or drawn current of the battery cell, and the Sigma point Kalman filter is used to estimate the states of the experimentally derived electrothermal model. The simulation and experimental results indicate that incorporating model predictive controller and Kalman filter Estimators can be a novel strategy to simultaneously manage electrical and thermal states in both charge and discharge operations. It is also expected that controlling the electrical and thermal states of battery cells in fast charge-discharge operations may increase the safety and lifetime of the cell.

کلیدواژه‌ها [English]

  • Lithium-ion batteries
  • thermal management
  • electrical management
  • MPC
  • nonlinear kalman filters
[1] S.F. Tie, C.W. Tan, A review of energy sources and energy management system in electric vehicles, Renewable and Sustainable Energy Reviews, 20 (2013) 82-102.
[2] X. Lin, H. Perez, J. Siegel, A. Stefanopoulou, Robust Estimation of Battery System Temperature Distribution Under Sparse Sensing and Uncertainty, IEEE Transactions on Control Systems Technology, PP (2019) 1-13.
[3] X. Feng, M. Fang, X. He, M. Ouyang, L. Lu, H. Wang, M. Zhang, Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry, Journal of Power Sources, 255 (2014) 294-301.
[4] C. Forgez, D. Vinh Do, G. Friedrich, M. Morcrette, C. Delacourt, Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery, Journal of Power Sources, 195(9) (2010) 2961-2968.
[5] X. Lin, H.E. Perez, S. Mohan, J.B. Siegel, A.G. Stefanopoulou, Y. Ding, M.P. Castanier, A lumped-parameter electro-thermal model for cylindrical batteries, Journal of Power Sources, 257 (2014) 1-11.
[6] A. Tomaszewska, Z. Chu, X. Feng, S. O'Kane, X. Liu, J. Chen, C. Ji, E. Endler, R. Li, L. Liu, Lithium-ion battery fast charging: A review, ETransportation, 1 (2019) 100011.
[7] Z. Rao, S. Wang, A review of power battery thermal energy management, Renewable and Sustainable Energy Reviews, 15(9) (2011) 4554-4571.
[8] K. Chen, W. Wu, F. Yuan, L. Chen, S. Wang, Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern, Energy, 167 (2019) 781-790.
[9] S.A. Khateeb, S. Amiruddin, M. Farid, J.R. Selman, S. Al-Hallaj, Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation, Journal of Power Sources, 142(1) (2005) 345-353.
[10] M.A. Xavier, M.S. Trimboli, Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models, Journal of Power Sources, 285 (2015) 374-384.
[11] K. Liu, K. Li, C. Zhang, Constrained generalized predictive control of battery charging process based on a coupled thermoelectric model, Journal of Power Sources, 347 (2017) 145-158.
[12] G.H. Florentino, Model predictive control implementation of lithium-ion battery cells and packs using reduced-order electrochemical models, University of Colorado at Colorado Springs2018.
[13] G. Hwang, N. Sitapure, J. Moon, H. Lee, S. Hwang, J. Sang-Il Kwon, Model predictive control of Lithium-ion batteries: Development of optimal charging profile for reduced intracycle capacity fade using an enhanced single particle model (SPM) with first-principled chemical/mechanical degradation mechanisms, Chemical Engineering Journal, 435 (2022) 134768.
[14] M. Araujo Xavier, A. Kawakita de Souza, K. Karami, G. Plett, M. Trimboli, A Computational Framework for Lithium-Ion Cell-Level Model Predictive Control Using a Physics-Based Reduced-Order Model, 2021.
[15] A. Kawakita de Souza, M. Trimboli, G. Plett, A Model Predictive Control-Based State of Power Estimation Algorithm Using Adaptive Weighting, 2022.
[16] S. Sepasi, R. Ghorbani, B.Y. Liaw, Improved extended Kalman filter for state of charge estimation of battery pack, Journal of Power Sources, 255 (2014) 368-376.
[17] G.L. Plett, Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation, Journal of Power Sources, 134(2) (2004) 277-292.
[18] Y. Ma, Y. Cui, H. Mou, J. Gao, H. Chen, Core Temperature Estimation of lithium-ion Battery for EVs using Kalman Filter, Applied Thermal Engineering, 168 (2019) 114816.
[19] G.L. Plett, Battery Management Systems, Volume I: Battery Modeling
[20] H. He, R. Xiong, H. Guo, S. Li, Comparison study on the battery models used for the energy management of batteries in electric vehicles, Energy Conversion and Management, 64 (2012) 113-121.
[21] X. Lin, H. Perez, J. Siegel, A. Stefanopoulou, Y. Li, D. Anderson, Y. Ding, M. Castanier, Online Parameterization of Lumped Thermal Dynamics in Cylindrical Lithium Ion Batteries for Core Temperature Estimation and Health Monitoring, Control Systems Technology, IEEE Transactions on, 21 (2013) 1745-1755.
[22] G.L. Plett, Equivalent-Circuit Methods. Artech House, 2015.
[23] G.L. Plett, Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2: Simultaneous state and parameter estimation, Journal of Power Sources, 161(2) (2006) 1369-1384.
[24] J.M. Maciejowski, Predictive control: with constraints, Pearson education, 2002.
[25] A. Ordys, A. Pike, State space generalized predictive control incorporating direct through terms, in:  Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No. 98CH36171), IEEE, 1998, pp. 4740-4741.
[26] N. Thanh Tung, A. Khan, Y. Ko, W. Choi, An Accurate State of Charge Estimation Method for Lithium Iron Phosphate Battery Using a Combination of an Unscented Kalman Filter and a Particle Filter, Energies, 13 (2020) 4536.
[27] C. Hildreth, A quadratic programming procedure, Naval research logistics quarterly, 4(1) (1957) 79-85.