[1] W. Jurczak, L. Kyzioł, Dynamic properties of 7000-series aluminum alloys at large strain rates, Polish Maritime Research, 19(1) (2012) 38-43.
[2] G. Fribourg, Precipitation and plasticity couplings in a 7xxx aluminium alloy: application to thermomechanical treatments for distortion correction of aerospace component, institute polytechnique de Grenoble, (2010).
[3] G. Fu, F. Tian, H. Wang, Studies on softening of heat-affected zone of pulsed-current GMA welded Al–Zn–Mg alloy, Journal of Materials Processing Technology, 180(1-3) (2006) 216-220.
[4] S. Kou, Welding metallurgy, A John Wiley & Sons, New Jersey, USA, (2003).
[5]B. Hu, I. Richardson, Hybrid laser/GMA welding aluminium alloy 7075, Welding in the World, 50(7-8) (2006) 51-57.
[6] J. Goldak, A. Chakravarti, M. Bibby, A new finite element model for welding heat sources,Metallurgical transactions B, 15(2) (1984) 299-305.
[7] S. Bate, R. Charles, A. Warren, Finite element analysis of a single bead-on-plate specimen using SYSWELD, International Journal of Pressure Vessels Piping, 86(1) (2009) 73-78.
[8] A. Farzadi, S. Serajzadeh, A. Kokabi, Modeling of heat transfer and fluid flow during gas tungsten arc welding of commercial pure aluminum, The International Journal of Advanced Manufacturing Technology, 38(3-4) (2008) 258-267.
[9] E. Ranjbarnodeh, S. Serajzadeh, A.H. Kokabi, S. Hanke, A. Fischer, Finite element modeling of the effect of heat input on residual stresses in dissimilar joints, The International Journal of Advanced Manufacturing Technology, 55(5-8) (2011) 649-656.
[10] S.A. Mousavi, R. Miresmaeili, Experimental and numerical analyses of residual stress distributions in TIG welding process for 304L stainless steel, Journal of Materials Processing Technology, 208(1-3) (2008) 383-394.
[11] G.J. A., A. M., Computational Welding Mechanics, Springer Science, New York, USA, 2005.
[12] J.M. Papazian, Calorimetric studies of precipitation and dissolution kinetics in aluminum alloys 2219 and 7075, Metallurgical Transactions A, 13(5) (1982) 761-769.