Numerical Simulation of a Biogas-fueled Solid Oxide Fuel Cell and the Investigation of the Influence of Operating Conditions

Document Type : Research Article

Authors

Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran

Abstract

Using biogas, rather than pure hydrogen, in a solid oxide fuel cell (SOFC) can help the green energy production chain. This research investigates the influence of operating conditions on the performance of a biogas-fueled SOFC. In this regard, a 3D numerical model is developed using a finite volume approach and Fluent software. User Defined Functions are employed to introduce the steam reforming processes inside the SOFC. The second-order upwind scheme and SIMPLE algorithm are used for the discretization of governing equations and the pressure-velocity coupling. The results indicate that the power density first increases and then decreases by increasing the steam-to-fuel (S/C) ratio. Increasing the biogas methane content causes the performance of the SOFC to improve by enhancing the rates of reforming reactions. At a voltage of 0.5V and an operating temperature of 1073K, increasing the biogas methane percentage from 45% to 65%, causes the power to increase by 15%. Also, increasing the operating temperature enhances the SOFC performance by increasing the rates of reforming and electrochemical reactions and the electrolyte ionic conductivity. At a voltage of 0.5V, for a biogas methane percentage of 65%, increasing the operating temperature from 1073K to 1273K leads to a 132% growth of power. It is also found that the optimal S/C ratio decreases with temperature and increases with biogas methane content and lies within the range of 0.3-1.2.

Keywords

Main Subjects


[1] J. Xuan, M.K. Leung, D.Y. Leung, M. Ni, A review of biomass-derived fuel processors for fuel cell systems, Renewable and Sustainable Energy Reviews, 13(6-7) (2009) 1301-1313.
[2] A.B. Stambouli, E. Traversa, Fuel cells, an alternative to standard sources of energy, Renewable and sustainable energy reviews, 6(3) (2002) 295-304.
[3] S.C. Singhal, K. Kendall, High-temperature solid oxide fuel cells: fundamentals, design and applications, Elsevier, 2003.
[4] M. Ni, D.Y. Leung, M.K. Leung, Modeling of methane fed solid oxide fuel cells: comparison between proton conducting electrolyte and oxygen ion conducting electrolyte, Journal of Power Sources, 183(1) (2008) 133-142.
[5] Q. Ma, R. Peng, Y. Lin, J. Gao, G. Meng, A high-performance ammonia-fueled solid oxide fuel cell, Journal of power sources, 161(1) (2006) 95-98.
[6] X. Lv, C. Gu, X. Liu, Y. Weng, Effect of gasified biomass fuel on load characteristics of an intermediate-temperature solid oxide fuel cell and gas turbine hybrid system, International Journal of Hydrogen Energy, 41(22) (2016) 9563-9576.
[7] C.O. Colpan, I. Dincer, F. Hamdullahpur, Thermodynamic modeling of direct internal reforming solid oxide fuel cells operating with syngas, International Journal of Hydrogen Energy, 32(7) (2007) 787-795.
[8] T. Zhao, Micro fuel cells: principles and applications, Academic Press, 2009.
[9] Y. Shiratori, T. Oshima, K. Sasaki, Feasibility of direct-biogas SOFC, International Journal of Hydrogen Energy, 33(21) (2008) 6316-6321.
[10] V. Eveloy, W. Karunkeyoon, P. Rodgers, A. Al Alili, Energy, exergy and economic analysis of an integrated solid oxide fuel cell–gas turbine–organic Rankine power generation system, International journal of hydrogen energy, 41(31) (2016) 13843-13858.
[11] M. Ni, D.Y. Leung, M.K. Leung, Mathematical modeling of ammonia-fed solid oxide fuel cells with different electrolytes, International Journal of Hydrogen Energy, 33(20) (2008) 5765-5772.
[12] M. Liu, R. Peng, D. Dong, J. Gao, X. Liu, G. Meng, Direct liquid methanol-fueled solid oxide fuel cell, Journal of Power Sources, 185(1) (2008) 188-192.
[13] n. Kousheshi, M. Yari, A. Saberi Mehr, Investigation of Performance and Emission Characteristic of a Reactivity Controlled Compression Ignition Engine Fueled By a Mixture of Diesel and Syngas Derived From Biomass Gasification, Amirkabir Journal of Mechanical Engineering, 53(1) (2021) 17-30.
[14] H. Timmermann, W. Sawady, R. Reimert, E. Ivers-Tiffée, Kinetics of (reversible) internal reforming of methane in solid oxide fuel cells under stationary and APU conditions, Journal of Power Sources, 195(1) (2010) 214-222.
[15] N. Laosiripojana, S. Assabumrungrat, Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ: The possible use of these fuels in internal reforming SOFC, Journal of Power Sources, 163(2) (2007) 943-951.
[16] C. Guerra, A. Lanzini, P. Leone, M. Santarelli, D. Beretta, Experimental study of dry reforming of biogas in a tubular anode-supported solid oxide fuel cell, International Journal of Hydrogen Energy, 38(25) (2013) 10559-10566.
[17] A. Galvagno, V. Chiodo, F. Urbani, F. Freni, Biogas as hydrogen source for fuel cell applications, International Journal of Hydrogen Energy, 38(10) (2013) 3913-3920.
[18] A. Lanzini, P. Leone, Experimental investigation of direct internal reforming of biogas in solid oxide fuel cells, International Journal of Hydrogen Energy, 35(6) (2010) 2463-2476.
[19] Y. Wang, F. Yoshiba, M. Kawase, T. Watanabe, Performance and effective kinetic models of methane steam reforming over Ni/YSZ anode of planar SOFC, International Journal of Hydrogen Energy, 34(9) (2009) 3885-3893.
[20] J.R. Rostrup-Nielsen, J. Sehested, J. Noerskov, Hydrogen and Synthesis Gas by Steam and CO2 Reforming, Cheminform, 34 (2003).
[21] J. Ashok, S. Das, N. Dewangan, S. Kawi, Steam reforming of surrogate diesel model over hydrotalcite-derived MO-CaO-Al2O3 (M= Ni & Co) catalysts for SOFC applications, Fuel, 291 (2021) 120194.
[22] T. Nguyen, M. Sakamoto, T. Uchida, D. Doan, M. Dang, P. Tu, K. Sasaki, Y. Shiratori, Development of paper-structured catalyst for application to direct internal reforming solid oxide fuel cell fueled by biogas, International Journal of Hydrogen Energy, 44(21) (2019) 10484-10497.
[23] J. Kihlman, J. Sucipto, N. Kaisalo, P. Simell, J. Lehtonen, Carbon formation in catalytic steam reforming of natural gas with SOFC anode off-gas, International Journal of Hydrogen Energy, 40(3) (2015) 1548-1558.
[24] N. Laosiripojana, W. Sangtongkitcharoen, S. Assabumrungrat, Catalytic steam reforming of ethane and propane over CeO2-doped Ni/Al2O3 at SOFC temperature: Improvement of resistance toward carbon formation by the redox property of doping CeO2, Fuel, 85(3) (2006) 323-332.
[25] E. Vakouftsi, G. Marnellos, C. Athanasiou, F. Coutelieris, CFD modeling of a biogas fuelled SOFC, Solid State Ionics, 192(1) (2011) 458-463.
[26] E. Vakouftsi, G. Marnellos, C. Athanasiou, F. Coutelieris, A detailed model for transport processes in a methane fed planar SOFC, Chemical Engineering Research and Design, 89(2) (2011) 224-229.
[27] M. Borji, S. Ghorbani, K. Atashkari, A. Etemadi, Numerical Investigation of Integrated Biomass Gasification and Planar Solid Oxide Fuel Cell, Amirkabir Journal of Mechanical Engineering, 49(1) (2017) 219-230.
[28] S. Saleh Mirhasani, S. Jafarmadar, S. Khalilarya, A. Chitsaz, Exergoeconomic Analysis of a Solid Oxide Fuel Cell Based Trigeneration System with External Reformer and Dimethyl Ether, Amirkabir Journal of Mechanical Engineering, 52(6) (2019) 1463-1478.
[29] K. Chouhan, S. Sinha, S. Kumar, S. Kumar, Utilization of biogas from different substrates for SOFC feed via steam reforming: Thermodynamic and exergy analyses, Journal of Environmental Chemical Engineering, 7(2) (2019) 103018.
[30] P. Piroonlerkgul, S. Assabumrungrat, N. Laosiripojana, A. Adesina, Selection of appropriate fuel processor for biogas-fuelled SOFC system, Chemical Engineering Journal, 140(1-3) (2008) 341-351.
[31] N. Chatrattanawet, D. Saebea, S. Authayanun, A. Arpornwichanop, Y. Patcharavorachot, Performance and environmental study of a biogas-fuelled solid oxide fuel cell with different reforming approaches, Energy, 146 (2018) 131-140.
[32] T. Nishino, J.S. Szmyd, Numerical analysis of a cell-based indirect internal reforming tubular SOFC operating with biogas, Journal of Fuel Cell Science and Technology, 7(5) (2010).
[33] Y. Wang, L. Wehrle, A. Banerjee, Y. Shi, O. Deutschmann, Analysis of a biogas-fed SOFC CHP system based on multi-scale hierarchical modeling, Renewable energy, 163 (2021) 78-87.
[34] V. Chiodo, A. Galvagno, A. Lanzini, D. Papurello, F. Urbani, M. Santarelli, S. Freni, Biogas reforming process investigation for SOFC application, Energy Conversion and Management, 98 (2015) 252-258.
[35] B. Tjaden, M. Gandiglio, A. Lanzini, M. Santarelli, M. Jarvinen, Small-scale biogas-SOFC plant: technical analysis and assessment of different fuel reforming options, Energy & fuels, 28(6) (2014) 4216-4232.
[36] K.-W. Lin, H.-W. Wu, Hydrogen-rich syngas production and carbon dioxide formation using aqueous urea solution in biogas steam reforming by thermodynamic analysis, International Journal of Hydrogen Energy, 45(20) (2020) 11593-11604.
[37] O. Razbani, M. Assadi, M. Andersson, Three dimensional CFD modeling and experimental validation of an electrolyte supported solid oxide fuel cell fed with methane-free biogas, International Journal of Hydrogen Energy, 38(24) (2013) 10068-10080.
[38] D. Saebea, A. Arpornwichanop, Y. Patcharavorachot, Thermodynamic analysis of a proton conducting SOFC integrated system fuelled by different renewable fuels, International Journal of Hydrogen Energy, 46(20) (2021) 11445-11457.
[39] Z. Qu, P. Aravind, S. Boksteen, N. Dekker, A. Janssen, N. Woudstra, A. Verkooijen, Three-dimensional computational fluid dynamics modeling of anode-supported planar SOFC, International Journal of Hydrogen Energy, 36(16) (2011) 10209-10220.
[40] Z. Zhang, D. Yue, C. He, S. Ye, W. Wang, J. Yuan, Three-dimensional CFD modeling of transport phenomena in anode-supported planar SOFCs, Heat and Mass Transfer, 50(11) (2014) 1575-1586.
[41] H. Hesami, M. Borji, J. Rezapour, Three-Dimensional Numerical Study of Solid Oxide Fuel Cell Performance with Converging Diverging Flow Field, Amirkabir Journal of Mechanical Engineering, 54(3) (2022) 589-614.
[42] M. Ni, Electrolytic effect in solid oxide fuel cells running on steam/methane mixture, Journal of Power Sources, 196(4) (2011) 2027-2036.
[43] M. Ni, Modeling of SOFC running on partially pre-reformed gas mixture, International Journal of Hydrogen Energy, 37(2) (2012) 1731-1745.
[44] B. Haberman, J. Young, Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell, International Journal of Heat and Mass Transfer, 47(17-18) (2004) 3617-3629.
[45] M. Ni, Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming, Energy Conversion and Management, 70 (2013) 116-129.
[46] M.W. Chase, N.I.S. Organization, NIST-JANAF thermochemical tables, American Chemical Society Washington, DC, 1998.
[47] H. Bouwmeester, P.J. Gellings, The CRC handbook of solid state electrochemistry, 1997.
[48] M.H. Akbari, B. Rismanchi, Numerical investigation of flow field configuration and contact resistance for PEM fuel cell performance, Renewable Energy, 33(8) (2008) 1775-1783.
[49] S. Nagata, A. Momma, T. Kato, Y. Kasuga, Numerical analysis of output characteristics of tubular SOFC with internal reformer, Journal of Power Sources, 101(1) (2001) 60-71.
[50] Q. Wang, L. Li, C. Wang, Numerical study of thermoelectric characteristics of a planar solid oxide fuel cell with direct internal reforming of methane, Journal of Power Sources, 186(2) (2009) 399-407.
[51] Z. Zhang, D. Yue, G. Yang, J. Chen, Y. Zheng, H. Miao, W. Wang, J. Yuan, N. Huang, Three-dimensional CFD modeling of transport phenomena in multi-channel anode-supported planar SOFCs, International Journal of Heat and Mass Transfer, 84 (2015) 942-954.
[52] M. Hussain, X. Li, I. Dincer, Mathematical modeling of planar solid oxide fuel cells, Journal of Power Sources, 161(2) (2006) 1012-1022.
[53] M.E. Chelmehsara, J. Mahmoudimehr, Techno-economic comparison of anode-supported, cathode-supported, and electrolyte-supported SOFCs, International journal of hydrogen energy, 43(32) (2018) 15521-15530.
[54] S.V. Patankar, Numerical heat transfer and fluid flow, Hemisphere Publ, Corp., New York, 58 (1980) 288.
[55] J. Ramírez-Minguela, V. Rangel-Hernández, J. Alfaro-Ayala, A. Uribe-Ramírez, J. Mendoza-Miranda, J. Belman-Flores, B. Ruiz-Camacho, Energy and entropy study of a SOFC using biogas from different sources considering internal reforming of methane, International Journal of Heat and Mass Transfer, 120 (2018) 1044-1054.
[56] Y. Yang, G. Wang, H. Zhang, W. Xia, Comparison of heat and mass transfer between planar and MOLB-type SOFCs, Journal of Power Sources, 177(2) (2008) 426-433.
[57] M. Jahn, M. Heddrich, A. Weder, E. Reichelt, R. Lange, Oxidative Dry‐Reforming of Biogas: Reactor Design and SOFC System Integration, Energy Technology, 1(1) (2013) 48-58.
[58] M. Balat, H. Balat, Biogas as a renewable energy source—a review, Energy Sources, Part A, 31(14) (2009) 1280-1293.
[59] M.F. Serincan, U. Pasaogullari, N.M. Sammes, Effects of operating conditions on the performance of a micro-tubular solid oxide fuel cell (SOFC), Journal of Power Sources, 192(2) (2009) 414-422.
[60] L.A. Chick, O.A. Marina, C.A. Coyle, E.C. Thomsen, Effects of temperature and pressure on the performance of a solid oxide fuel cell running on steam reformate of kerosene, Journal of power sources, 236 (2013) 341-349.
[61] H. Djamel, A. Hafsia, Z. Bariza, B.M. Hocine, O. Kafia, Thermal field in SOFC fed by hydrogen: Inlet gases temperature effect, International journal of hydrogen energy, 38(20) (2013) 8575-8583.
[62] S.A. Saadabadi, A.T. Thattai, L. Fan, R.E. Lindeboom, H. Spanjers, P. Aravind, Solid Oxide Fuel Cells fuelled with biogas: Potential and constraints, Renewable Energy, 134 (2019) 194-214.
[63] S. Araki, N. Hino, T. Mori, S. Hikazudani, Autothermal reforming of biogas over a monolithic catalyst, Journal of Natural Gas Chemistry, 19(5) (2010) 477-481.
[64] Z. Jaworski, B. Zakrzewska, P. Pianko-Oprych, On thermodynamic equilibrium of carbon deposition from gaseous CHO mixtures: updating for nanotubes, Reviews in Chemical Engineering, 33(3) (2017) 217-235.