[1] M. Siadaty, S. Kheradmand, Numerical Simulation of Gas–Solid Cyclone Separators Operating at High Temperatures, Amirkabir Journal of Mechanical Engineering, 49(3) (2017) 495-506. (in Persian).
[2] B. Gopalakrishnan, G.S. Kumar, K.A. Prakash, Parametric analysis and optimization of gas-particle flow through axial cyclone separator: A numerical study, Advanced Powder Technology, 34(2) (2023) 103959.
[3] M.A. El-Emam, L. Zhou, W.D. Shi, C. Han, True shape modeling of bio-particulate matter flow in an aero-cyclone separator using CFD–DEM simulation, Computational Particle Mechanics, 8 (2021) 955-971.
[4] C.J. Stairmand, The design and performance of cyclone separators, Trans. Instn. Chem. Engrs., 29 (1951) 356-383.
[5] K. Elsayed, C. Lacor, Optimization of the cyclone separator geometry for minimum pressure drop using mathematical models and CFD simulations, Chemical Engineering Science, 65(22) (2010) 6048-6058.
[6] Y. Zhu, M. Kim, K. Lee, Y. Park, M. Kuhlman, Design and performance evaluation of a novel double cyclone, Aerosol Science & Technology, 34(4) (2001) 373-380.
[7] R. Xiang, K. Lee, Exploratory study on cyclones of modified designs, Particulate science and technology, 19(4) (2001) 327-338.
[8] K. Lim, H. Kim, K. Lee, Comparative performances of conventional cyclones and a double cyclone with and without an electric field, Journal of aerosol science, 35(1) (2004) 103-116.
[9] W. Wang, P. Zhang, L. Wang, G. Chen, J. Li, X. Li, Structure and performance of the circumfluent cyclone, Powder technology, 200(3) (2010) 158-163.
[10] H. Yoshida, K. Fukui, K. Yoshida, E. Shinoda, Particle separation by Iinoya's type gas cyclone, Powder technology, 118(1-2) (2001) 16-23.
[11] K. Elsayed, C. Lacor, The effect of cyclone inlet dimensions on the flow pattern and performance, Applied mathematical modelling, 35(4) (2011) 1952-1968.
[12] B. Zhao, Y. Su, J. Zhang, Simulation of gas flow pattern and separation efficiency in cyclone with conventional single and spiral double inlet configuration, Chemical Engineering Research and Design, 84(12) (2006) 1158-1165.
[13] F. Qian, M. Zhang, Effects of the inlet section angle on the flow field of a cyclone, Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 30(11) (2007) 1564-1570.
[14] F. Qian, Y. Wu, Effects of the inlet section angle on the separation performance of a cyclone, Chemical Engineering research and design, 87(12) (2009) 1567-1572.
[15] F.M. Erdal, S.A. Shirazi, Effect of the inlet geometry on the flow in a cylindrical cyclone separator, 128(1) (2006) 62-69.
[16] Y. Zheng, L. Ni, Numerical study on particles separation using a cyclone enhanced by shunt device: Effects of cylinder-to-cone ratio and vortex finder-to-cylinder ratio, Powder Technology, 408 (2022) 117767.
[17] T. Chuah, J. Gimbun, T.S. Choong, A CFD study of the effect of cone dimensions on sampling aerocyclones performance and hydrodynamics, Powder technology, 162(2) (2006) 126-132.
[18] R. Xiang, S. Park, K. Lee, Effects of cone dimension on cyclone performance, Journal of Aerosol Science, 32(4) (2001) 549-561.
[19] F. Qian, J. Zhang, M. Zhang, Effects of the prolonged vertical tube on the separation performance of a cyclone, Journal of hazardous materials, 136(3) (2006) 822-829.
[20] F. Kaya, I. Karagoz, Numerical investigation of performance characteristics of a cyclone prolonged with a dipleg, Chemical Engineering Journal, 151(1-3) (2009) 39-45.
[21] L. Shi, D.J. Bayless, G. Kremer, B. Stuart, Numerical investigation of the flow profiles in the electrically enhanced cyclone, Journal of the Air & Waste Management Association, 57(4) (2007) 489-496.
[22] C.-J. Chen, Enhanced collection efficiency for cyclone by applying an external electric field, Separation Science and Technology, 36(3) (2001) 499-511.
[23] A. Darabi, A. Momenimovahed, Numerical simulation of an electro-cyclone for classification of micron-sized particles, Amirkabir Journal of Mechanical Engineering, 54(9) (2022) 1-1. (in Persian).
[24] H. Jeon, S. Park, Separation of fine particles with electrostatically enhanced cyclone, Separation Science and Technology, 55(3) (2020) 575-582.
[25] J. Zhang, J. Wang, P. Che, Y. Wang, Z. Lu, Z. Qu, Numerical simulation on magnetic confinement characteristics of internal vortex electrostatic cyclone precipitator under different working voltages, Particuology, 74 (2023) 156-163.
[26] N. Amanifard, M. Abdollahzadeh, H. Moayedi, J. Pascoa, An explicit CFD model for the DBD plasma actuators using wall-jet similarity approach, Journal of Electrostatics, 107 (2020) 103497.
[27] H. Moayedi, N. Amanifard, H.M. Deylami, Parametric study of DBD plasma actuator for heat transfer enhancement in flow over a flat plate at low Reynolds numbers, Journal of Electrostatics, 124 (2023) 103825.
[28] J.-S. Yoon, J.-H. Han, Semiempirical thrust model of dielectric barrier plasma actuator for flow control, Journal of Aerospace Engineering, 28(1) (2015) 04014041.
[29] S. Dolati, N. Amanifard, H. Mohaddes Deylami, Numerical Investigation of the Effect of Plasma Actuator on the Film Cooling Effectiveness By Fan-Shaped Hole, Amirkabir Journal of Mechanical Engineering, 50(6) (2019) 1213-1228. (in Persian).
[30] H. Yazdani, M. Sefid, Power Improvement of a Commercial Large Scale Vertical-Axis Wind Turbine Using Plasma Actuators, Amirkabir Journal of Mechanical Engineering, 53(3) (2021) 1487-1504. (in Persian).
[31] K. Adamiak, Quasi-stationary modeling of the DBD plasma flow control around airfoil, Physics of Fluids, 32(8) (2020) 085108.
[32] H. Moayedi, N. Amanifard, Finding a low cost energy multi-DBD plasma actuator for natural heat transfer enhancement in a vertical duct, Journal of Electrostatics, 108 (2020) 103520.
[33] M. Slack, R. Prasad, A. Bakker, F. Boysan, Advances in cyclone modelling using unstructured grids, Chemical Engineering Research and Design, 8(78) (2000) 1098-1104.
[34] S.K. Shukla, P. Shukla, P. Ghosh, Evaluation of numerical schemes for dispersed phase modeling of cyclone separators, Engineering Applications of Computational Fluid Mechanics, 5(2) (2011) 235-246.
[35] F.O. Thomas, T.C. Corke, M. Iqbal, A. Kozlov, D. Schatzman, Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control, AIAA journal, 47(9) (2009) 2169-2178.
[36] A. Bouchmal, Modeling of Dielectric-Barrier Discharge Actuator: Implementation, validation and generalization of an electrostatic model, TU Delft, Master Thesis, Delft University of Technology, (2011).
[37] A.J. Hoekstra, Gas flow field and collection efficiency of cyclone separators, TU Delft, Ph. D. Thesis, Delft University of Technology, (2000).