Investigating of the stability and structural, mechanical and electronic properties of two new superhard conductive carbon structures

Document Type : Research Article

Authors

1 Department of Physics, Tafresh University, Tafresh 39518-79611, Iran

2 Physics group of islamic azad university

Abstract

In this research, two new superhard metallic carbon allotropes αC28 and βC32 are predicted using density functional theory (DFT). These stable tetragonal structures belong to the P4/MMM space group. Molecular dynamics simulation performed under canonical ensemble (NVT) to investigate the thermal stability of new αC28 and βC32 carbon crystals at temperatures of 300 and 1000 K, confirms their thermal stability. In addition, we calculated the mechanical coefficients and band gap energy of these two structures to examine their mechanical and electronic stability. These new carbon allotropes are composed of sp2 and sp3 bond hybridization, which shows excellent mechanical properties with Vickers hardness of 45.7 and 47.9 GPa. Other mechanical properties of these crystals such as bulk modulus (265.8, 284.9), shear modulus (254.7, 273.5), and Young's modulus (579.1, 621.6) also confirm the superhardness of these structures. The results related to the electronic band structures indicate that both structures have metallic properties. The width of both conduction and valance bands for both structures is about 20 eV. The results of calculations show that αC28 and βC32 can be synthesized in the laboratory in the future and will have potential applications in mechanical and electronic devices.

Keywords

Main Subjects


[1] M. Xing, X. Li, An orthorhombic carbon allotrope with a quasi-direct band gap and superhard, Diamond and Related Materials, 131 (2023) 109592.
[2] Q. Fan, C. Li, R. Yang, X. Yu, S. Yun, A larger-cell tetragonal carbon allotrope tP176 carbon with superhardness, Materials Letters, 326 (2022) 132925.
[3] P. Ying, Z. Li, S. Chen, H. Li, Y. Gao, J. He, C. Liu, First-principles study on stability, electronic and mechanical properties of 4^ 3T175 carbon allotrope, Computational Materials Science, 219 (2023) 111956.
[4] Y. Pan, C. Xie, M. Xiong, M. Ma, L. Liu, Z. Li, S. Zhang, G. Gao, Z. Zhao, Y. Tian, A superhard sp3 microporous carbon with direct bandgap, Chemical Physics Letters, 689 (2017) 68-73.
[5] S. Ghorbanali, E. Zaminpayma, H. Mobarakinia, Two orthorhombic superhard carbon allotropes: Hcc-C14 and DHcc-C20, Diamond and Related Materials, 126 (2022) 109065.
[6] Y. Zhou, X. Chen, S.-L. Liu, L.-H. Gan, Three tetragonal superhard sp3 carbon allotropes, Solid State Communications, 323 (2021) 114095.
[7] Q. Li, Y. Ma, A.R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H.-K. Mao, G. Zou, Superhard monoclinic polymorph of carbon, Physical review letters, 102(17) (2009) 175506.
[8] S. Ghorbanali, E. Zaminpayma, H. Mobarakinia, Stability, mechanical and electronic properties of Occ carbon allotropes: Four new tetragonal 3D superhard carbon crystals, Diamond and Related Materials,  (2023) 109838.
[9] J.-T. Wang, C. Chen, Y. Kawazoe, Low-temperature phase transformation from graphite to s p 3 orthorhombic carbon, Physical review letters, 106(7) (2011) 075501.
[10] X. Yang, C. Lv, S. Liu, J. Zang, J. Qin, M. Du, D. Yang, X. Li, B. Liu, C.-X. Shan, Orthorhombic C14 carbon: A novel superhard sp3 carbon allotrope, Carbon, 156 (2020) 309-312.
[11] K. Umemoto, R.M. Wentzcovitch, S. Saito, T. Miyake, Body-Centered Tetragonal C 4: A Viable s p 3 Carbon Allotrope, Physical review letters, 104(12) (2010) 125504.
[12] C. Zhang, Y. Cao, Y. Liu, H.-J. Hu, Z.G. Yu, Y.-W. Zhang, Bct-C5: A new body-centered tetragonal carbon allotrope, Diamond and Related Materials, 119 (2021) 108571.
[13] Q. Fan, H. Liu, L. Jiang, X. Yu, W. Zhang, S. Yun, Two orthorhombic superhard carbon allotropes: C16 and C24, Diamond and Related Materials, 116 (2021) 108426.
[14] Q. Fan, H. Liu, R. Yang, X. Yu, W. Zhang, S. Yun, An orthorhombic superhard carbon allotrope: Pmma C24, Journal of Solid State Chemistry, 300 (2021) 122260.
[15] W. Tong, Q. Wei, B. Wei, M. Hu, L. Li, M. Zhang, X. Zhu, Orthorhombic Fmmm-C80: A new superhard carbon allotrope with direct band gap, Computational Materials Science, 198 (2021) 110689.
[16] Q. Wei, X. Yang, B. Wei, M. Hu, W. Tong, R. Yang, H. Yan, M. Zhang, X. Zhu, R. Yao, Orthorhombic carbon oC48: A new superhard carbon allotrope, Solid State Communications, 319 (2020) 113994.
[17] C. He, X. Shi, S.J. Clark, J. Li, C.J. Pickard, T. Ouyang, C. Zhang, C. Tang, J. Zhong, Complex low energy tetrahedral polymorphs of group IV elements from first principles, Physical Review Letters, 121(17) (2018) 175701.
[18] L. Zhou, C. Chai, W. Zhang, Y. Song, Z. Zhang, Y. Yang, oI20-carbon: A new superhard carbon allotrope, Diamond and Related Materials, 113 (2021) 108284.
[19] W. Zhang, C. Chai, Q. Fan, Y. Song, Y. Yang, Penta-C20: a superhard direct band gap carbon allotrope composed of carbon pentagon, Materials, 13(8) (2020) 1926.
[20] X. Zhu, H. Yan, X. Wang, M. Zhang, Q. Wei, h-C63: A new hexagonal superhard metallic carbon allotrope, Results in Physics, 15 (2019) 102738.
[21] Q. Wei, H. Yuan, W. Tong, M. Zhang, Three new orthorhombic superhard metallic carbon allotropes, Diamond and Related Materials, 121 (2022) 108731.
[22] H. Su, Z. Lai, E. Kan, X. Zhu, CP-C20, a new metallic cubic carbon allotrope with an sp2 network, Journal of Solid State Chemistry, 283 (2020) 121136.
[23] S. Zhang, Q. Wang, X. Chen, P. Jena, Stable three-dimensional metallic carbon with interlocking hexagons, Proceedings of the National Academy of Sciences, 110(47) (2013) 18809-18813.
[24] Q. Fan, H. Liu, L. Jiang, W. Zhang, Y. Song, Q. Wei, X. Yu, S. Yun, Three-dimensional metallic carbon allotropes with superhardness, Nanotechnology Reviews, 10(1) (2021) 1266-1276.
[25] X. Wu, X. Shi, M. Yao, S. Liu, X. Yang, L. Zhu, T. Cui, B. Liu, Superhard three-dimensional carbon with metallic conductivity, Carbon, 123 (2017) 311-317.
[26] Y. Liu, X. Jiang, J. Fu, J. Zhao, New metallic carbon: Three dimensionally carbon allotropes comprising ultrathin diamond nanostripes, Carbon, 126 (2018) 601-610.
[27] E. Artacho, E. Anglada, O. Diéguez, J.D. Gale, A. García, J. Junquera, R.M. Martin, P. Ordejón, J.M. Pruneda, D. Sánchez-Portal, The SIESTA method; developments and applicability, Journal of Physics: Condensed Matter, 20(6) (2008) 064208.
[28] J. Perdew, E. McMullen, A. Zunger, Density-functional theory of the correlation energy in atoms and ions: a simple analytic model and a challenge, Physical Review A, 23(6) (1981) 2785.
[29] F. Mouhat, F.-X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Physical review B, 90(22) (2014) 224104.
[30] X. Liu, Q. Feng, B. Tang, J. Zheng, Z. Zheng, W. Zhou, J. Tian, J. Wang, First-principles calculations of mechanical and thermodynamic properties of tetragonal Be 12 Ti, RSC advances, 9(10) (2019) 5302-5312.
[31] R. Hill, The elastic behaviour of a crystalline aggregate, Proceedings of the Physical Society. Section A, 65(5) (1952) 349.
[32] S. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367) (1954) 823-843.
[33] X.-Q. Chen, H. Niu, D. Li, Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics, 19(9) (2011) 1275-1281.
[34] R. Hoffmann, A.A. Kabanov, A.A. Golov, D.M. Proserpio, Homo citans and carbon allotropes: For an ethics of citation, Angewandte Chemie International Edition, 55(37) (2016) 10962-10976.
[35] M. O’Keeffe, M.A. Peskov, S.J. Ramsden, O.M. Yaghi, The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets, Accounts of chemical research, 41(12) (2008) 1782-1789.