[1] M. Xing, X. Li, An orthorhombic carbon allotrope with a quasi-direct band gap and superhard, Diamond and Related Materials, 131 (2023) 109592.
[2] Q. Fan, C. Li, R. Yang, X. Yu, S. Yun, A larger-cell tetragonal carbon allotrope tP176 carbon with superhardness, Materials Letters, 326 (2022) 132925.
[3] P. Ying, Z. Li, S. Chen, H. Li, Y. Gao, J. He, C. Liu, First-principles study on stability, electronic and mechanical properties of 4^ 3T175 carbon allotrope, Computational Materials Science, 219 (2023) 111956.
[4] Y. Pan, C. Xie, M. Xiong, M. Ma, L. Liu, Z. Li, S. Zhang, G. Gao, Z. Zhao, Y. Tian, A superhard sp3 microporous carbon with direct bandgap, Chemical Physics Letters, 689 (2017) 68-73.
[5] S. Ghorbanali, E. Zaminpayma, H. Mobarakinia, Two orthorhombic superhard carbon allotropes: Hcc-C14 and DHcc-C20, Diamond and Related Materials, 126 (2022) 109065.
[6] Y. Zhou, X. Chen, S.-L. Liu, L.-H. Gan, Three tetragonal superhard sp3 carbon allotropes, Solid State Communications, 323 (2021) 114095.
[7] Q. Li, Y. Ma, A.R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H.-K. Mao, G. Zou, Superhard monoclinic polymorph of carbon, Physical review letters, 102(17) (2009) 175506.
[8] S. Ghorbanali, E. Zaminpayma, H. Mobarakinia, Stability, mechanical and electronic properties of Occ carbon allotropes: Four new tetragonal 3D superhard carbon crystals, Diamond and Related Materials, (2023) 109838.
[9] J.-T. Wang, C. Chen, Y. Kawazoe, Low-temperature phase transformation from graphite to s p 3 orthorhombic carbon, Physical review letters, 106(7) (2011) 075501.
[10] X. Yang, C. Lv, S. Liu, J. Zang, J. Qin, M. Du, D. Yang, X. Li, B. Liu, C.-X. Shan, Orthorhombic C14 carbon: A novel superhard sp3 carbon allotrope, Carbon, 156 (2020) 309-312.
[11] K. Umemoto, R.M. Wentzcovitch, S. Saito, T. Miyake, Body-Centered Tetragonal C 4: A Viable s p 3 Carbon Allotrope, Physical review letters, 104(12) (2010) 125504.
[12] C. Zhang, Y. Cao, Y. Liu, H.-J. Hu, Z.G. Yu, Y.-W. Zhang, Bct-C5: A new body-centered tetragonal carbon allotrope, Diamond and Related Materials, 119 (2021) 108571.
[13] Q. Fan, H. Liu, L. Jiang, X. Yu, W. Zhang, S. Yun, Two orthorhombic superhard carbon allotropes: C16 and C24, Diamond and Related Materials, 116 (2021) 108426.
[14] Q. Fan, H. Liu, R. Yang, X. Yu, W. Zhang, S. Yun, An orthorhombic superhard carbon allotrope: Pmma C24, Journal of Solid State Chemistry, 300 (2021) 122260.
[15] W. Tong, Q. Wei, B. Wei, M. Hu, L. Li, M. Zhang, X. Zhu, Orthorhombic Fmmm-C80: A new superhard carbon allotrope with direct band gap, Computational Materials Science, 198 (2021) 110689.
[16] Q. Wei, X. Yang, B. Wei, M. Hu, W. Tong, R. Yang, H. Yan, M. Zhang, X. Zhu, R. Yao, Orthorhombic carbon oC48: A new superhard carbon allotrope, Solid State Communications, 319 (2020) 113994.
[17] C. He, X. Shi, S.J. Clark, J. Li, C.J. Pickard, T. Ouyang, C. Zhang, C. Tang, J. Zhong, Complex low energy tetrahedral polymorphs of group IV elements from first principles, Physical Review Letters, 121(17) (2018) 175701.
[18] L. Zhou, C. Chai, W. Zhang, Y. Song, Z. Zhang, Y. Yang, oI20-carbon: A new superhard carbon allotrope, Diamond and Related Materials, 113 (2021) 108284.
[19] W. Zhang, C. Chai, Q. Fan, Y. Song, Y. Yang, Penta-C20: a superhard direct band gap carbon allotrope composed of carbon pentagon, Materials, 13(8) (2020) 1926.
[20] X. Zhu, H. Yan, X. Wang, M. Zhang, Q. Wei, h-C63: A new hexagonal superhard metallic carbon allotrope, Results in Physics, 15 (2019) 102738.
[21] Q. Wei, H. Yuan, W. Tong, M. Zhang, Three new orthorhombic superhard metallic carbon allotropes, Diamond and Related Materials, 121 (2022) 108731.
[22] H. Su, Z. Lai, E. Kan, X. Zhu, CP-C20, a new metallic cubic carbon allotrope with an sp2 network, Journal of Solid State Chemistry, 283 (2020) 121136.
[23] S. Zhang, Q. Wang, X. Chen, P. Jena, Stable three-dimensional metallic carbon with interlocking hexagons, Proceedings of the National Academy of Sciences, 110(47) (2013) 18809-18813.
[24] Q. Fan, H. Liu, L. Jiang, W. Zhang, Y. Song, Q. Wei, X. Yu, S. Yun, Three-dimensional metallic carbon allotropes with superhardness, Nanotechnology Reviews, 10(1) (2021) 1266-1276.
[25] X. Wu, X. Shi, M. Yao, S. Liu, X. Yang, L. Zhu, T. Cui, B. Liu, Superhard three-dimensional carbon with metallic conductivity, Carbon, 123 (2017) 311-317.
[26] Y. Liu, X. Jiang, J. Fu, J. Zhao, New metallic carbon: Three dimensionally carbon allotropes comprising ultrathin diamond nanostripes, Carbon, 126 (2018) 601-610.
[27] E. Artacho, E. Anglada, O. Diéguez, J.D. Gale, A. García, J. Junquera, R.M. Martin, P. Ordejón, J.M. Pruneda, D. Sánchez-Portal, The SIESTA method; developments and applicability, Journal of Physics: Condensed Matter, 20(6) (2008) 064208.
[28] J. Perdew, E. McMullen, A. Zunger, Density-functional theory of the correlation energy in atoms and ions: a simple analytic model and a challenge, Physical Review A, 23(6) (1981) 2785.
[29] F. Mouhat, F.-X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Physical review B, 90(22) (2014) 224104.
[30] X. Liu, Q. Feng, B. Tang, J. Zheng, Z. Zheng, W. Zhou, J. Tian, J. Wang, First-principles calculations of mechanical and thermodynamic properties of tetragonal Be 12 Ti, RSC advances, 9(10) (2019) 5302-5312.
[31] R. Hill, The elastic behaviour of a crystalline aggregate, Proceedings of the Physical Society. Section A, 65(5) (1952) 349.
[32] S. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367) (1954) 823-843.
[33] X.-Q. Chen, H. Niu, D. Li, Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics, 19(9) (2011) 1275-1281.
[34] R. Hoffmann, A.A. Kabanov, A.A. Golov, D.M. Proserpio, Homo citans and carbon allotropes: For an ethics of citation, Angewandte Chemie International Edition, 55(37) (2016) 10962-10976.
[35] M. O’Keeffe, M.A. Peskov, S.J. Ramsden, O.M. Yaghi, The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets, Accounts of chemical research, 41(12) (2008) 1782-1789.