[1] A. Ritter, Smart materials in architecture, interior architecture and design, Walter de Gruyter, 2006.
[2] T.J. Fiske, H.S. Gokturk, D.M. Kalyon, Percolation in magnetic composites, Journal of Materials Science, 32 (1997) 5551-5560.
[3] L. Chen, X.L. Gong, W.H. Li, Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers, Smart materials and structures, 16(6) (2007) 2645.
[4] J.D. Carlson, M.R. Jolly, MR fluid, foam and elastomer devices, mechatronics, 10(4-5) (2000) 555-569.
[5] A.K. Bastola, M. Hossain, A review on magneto-mechanical characterizations of magnetorheological elastomers, Composites Part B: Engineering, 200 (2020) 108348.
[6] F. Guo, C.B. Du, R.P. Li, Viscoelastic parameter model of magnetorheological elastomers based on abel dashpot, Advances in Mechanical Engineering, 6 (2014) 629386.
[7] M.R. Jolly, J.D. Carlson, B.C. Munoz, A model of the behaviour of magnetorheological materials, Smart materials and structures, 5(5) (1996) 607.
[8] J. Rabinow, The magnetic fluid clutch, Electrical Engineering, 67(12) (1948) 1167-1167.
[9] Z. Rigbi, L. Jilken, The response of an elastomer filled with soft ferrite to mechanical and magnetic influences, Journal of magnetism and magnetic materials, 37(3) (1983) 267-276.
[10] T. Shiga, A. Okada, T. Kurauchi, Electroviscoelastic effect of polymer blends consisting of silicone elastomer and semiconducting polymer particles, Macromolecules, 26(25) (1993) 6958-6963.
[11] M.R. Jolly, J.D. Carlson, B.C. Muñoz, T.A. Bullions, The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix, Journal of Intelligent Material Systems and Structures, 7(6) (1996) 613-622.
[12] P. Blom, L. Kari, A nonlinear constitutive audio frequency magneto-sensitive rubber model including amplitude, frequency and magnetic field dependence, Journal of sound and vibration, 330(5) (2011) 947-954.
[13] T. Shiga, A. Okada, T. Kurauchi, Magnetroviscoelastic behavior of composite gels, Journal of Applied Polymer Science, 58(4) (1995) 787-792.
[14] B.X. Ju, M. Yu, J. Fu, Q. Yang, X.Q. Liu, X. Zheng, A novel porous magnetorheological elastomer: preparation and evaluation, Smart Materials and Structures, 21(3) (2012) 035001.
[15] A. Dargahi, R. Sedaghati, S. Rakheja, On the properties of magnetorheological elastomers in shear mode: Design, fabrication and characterization, Composites Part B: Engineering, 159 (2019) 269-283.
[16] H. Vatandoost, M. Hemmatian, R. Sedaghati, S. Rakheja, Effect of shape factor on compression mode dynamic properties of magnetorheological elastomers, Journal of Intelligent Material Systems and Structures, 32(15) (2021) 1678-1699.
[17] A. Yaghoobi, A. Jalali, M. Norouzi, M. Ghatee, Aspect Ratio Dependency of Magneto-Rheological Elastomers in Dynamic Tension-Compression Loading, IEEE Transactions on Magnetics, 58(5) (2022) 1-13.
[18] F. Gordaninejad, X. Wang, P. Mysore, Behavior of thick magnetorheological elastomers, Journal of Intelligent Material Systems and Structures, 23(9) (2012) 1033-1039.
[19] Q. Jin, Y.G. Xu, Y. Di, H. Fan, Influence of the particle size on the rheology of magnetorheological elastomer, Materials Science Forum, 80(9) (2015) 757-763.
[20] C. Wu, C. Cheng, A. Abd El-Aty, T. Li, Y. Qin, Q. Yang, S. Hu, Y. Xu, X. Guo, Influence of particles size and concentration of carbonyl iron powder on magnetorheological properties of silicone rubber-based magnetorheological elastomer, Materials Research Express, 7(8) (2020) 086101.
[21] O. Padalka, H.J. Song, N.M. Wereley, J.A. Filer Ii, R.C. Bell, Stiffness and damping in Fe, Co, and Ni nanowire-based magnetorheological elastomeric composites, IEEE Transactions on Magnetics, 46(6) (2010) 2275-2277.
[22] G. Shi, W. Wang, G. Wang, F. Yang, X. Rui, Dynamic mechanical properties of FeSi alloy particles-filled magnetorheological elastomers, Polymer-Plastics Technology and Materials, 58(15) (2019) 1625-1637.
[23] W. Zhang, X.L. Gong, W.Q. Jiang, Y.C. Fan, Investigation of the durability of anisotropic magnetorheological elastomers based on mixed rubber, Smart Materials and Structures, 19(8) (2010) 085008.
[24] A. Nedjar, S. Aguib, T. Djedid, A. Nour, A. Settet, M. Tourab, Analysis of the dynamic behavior of magnetorheological elastomer composite: Elaboration and identification of rheological properties, Silicon, 11(3) (2019) 1287-1293.
[25] Y. Wan, Y. Xiong, S. Zhang, Temperature effect on viscoelastic properties of anisotropic magnetorheological elastomers under compression, Smart Materials and Structures, 28(1) (2018) 015005.
[26] W. Zhang, X. Gong, S. Xuan, W. Jiang, Temperature-dependent mechanical properties and model of magnetorheological elastomers, Industrial & engineering chemistry research, 50(11) (2011) 6704-6712.
[27] J.H. Koo, F. Khan, D.D. Jang, H.J. Jung, Dynamic characterization and modeling of magneto-rheological elastomers under compressive loadings, Smart Materials and Structures, 19(11) (2010) 117002.
[28] A. Martins, A. Fereidooni, A. Suleman, V.K. Wickramasinghe, Test rig development and characterization of magnetorheological elastomers, in: 25th AIAA/AHS Adaptive Structures Conference, 2017, pp. 0733.
[29] H. Vatandoost, R. Sedaghati, S. Rakheja, M. Hemmatian, Effect of pre-strain on compression mode properties of magnetorheological elastomers, Polymer Testing, 93 (2021) 106888.
[30] J. Zhang, H. Pang, Y. Wang, X. Gong, The magneto-mechanical properties of off-axis anisotropic magnetorheological elastomers, Composites Science and Technology, 191 (2020) 108079.
[31] T. Tian, M. Nakano, Fabrication and characterisation of anisotropic magnetorheological elastomer with 45 iron particle alignment at various silicone oil concentrations, Journal of Intelligent Material Systems and Structures, 29(2) (2018) 151-159.
[32] Y. Yu, Y. Li, J. Li, A novel strain stiffening model for magnetorheological elastomer base isolator and parameter estimation using improved particle swarm optimization, in: Sixth World Conference on Structural Control and Monitoring (6WCSCM), International Center for Numerical Methods in Engineering (CIMNE), 2014.
[33] J. Yang, H. Du, W. Li, Y. Li, J. Li, S. Sun, H.X. Deng, Experimental study and modeling of a novel magnetorheological elastomer isolator, Smart Materials and Structures, 22(11) (2013) 117001.
[34] W.H. Li, Y. Zhou, T.F. Tian, Viscoelastic properties of MR elastomers under harmonic loading, Rheologica acta, 49(7) (2010) 733-740.
[35] S.H. Eem, H.J. Jung, J.H. Koo, Modeling of magneto-rheological elastomers for harmonic shear deformation, IEEE transactions on magnetics, 48(11) (2012) 3080-3083.
[36] M. Norouzi, S.M. Sajjadi Alehashem, H. Vatandoost, Y.Q. Ni, M.M. Shahmardan, A new approach for modeling of magnetorheological elastomers, Journal of Intelligent Material Systems and Structures, 27(8) (2016) 1121-1135.
[37] H. Vatandoost, M. Norouzi, S.M.S. Alehashem, S.K. Smoukov, A novel phenomenological model for dynamic behavior of magnetorheological elastomers in tension–compression mode, Smart Materials and Structures, 26(6) (2017) 065011.
[38] K.M. Popp, M. Kröger, W.h. Li, X.Z. Zhang, P.B. Kosasih, MRE properties under shear and squeeze modes and applications, Journal of Intelligent Material Systems and Structures, 21(15) (2010) 1471-1477.
[39] H. Vatandoost, M. Hemmatian, R. Sedaghati, S. Rakheja, Dynamic characterization of isotropic and anisotropic magnetorheological elastomers in the oscillatory squeeze mode superimposed on large static pre-strain, Composites Part B: Engineering, 182 (2020) 107648.
[40] R. Brown, Physical testing of rubber, Springer Science & Business Media, 2006.