[1] K. Kumar, D. Zindani, N. Kumari, J.P. Davim, Micro and nano machining of engineering materials, Springer International Publishing, 10 (2019) 978-973.
[2] N. Taniguchi, Current status in, and future trends of, ultraprecision machining and ultrafine materials processing, CIRP annals, 32(2) (1983) 573-582.
[3] N. Kawasegi, N. Takano, D. Oka, N. Morita, S. Yamada, K. Kanda, S. Takano, T. Obata, K. Ashida, Nanomachining of Silicon Surface Using Atomic Force Microscope With Diamond Tip, Journal of Manufacturing Science and Engineering, 128(3) (2005) 723-729.
[4] A. Sharma, D. Datta, R. Balasubramaniam, Molecular dynamics simulation to investigate the orientation effects on nanoscale cutting of single crystal copper, Computational Materials Science, 153 (2018) 241-250.
[5] A.O. Oluwajobi, Nanomachining technology development, University of Huddersfield, 2012.
[6] J.P. Davim, M.J. Jackson, Nano and micromachining, Wiley Online Library, 2009.
[7] X. Guo, Q. Li, T. Liu, R. Kang, Z. Jin, D. Guo, Advances in molecular dynamics simulation of ultra-precision machining of hard and brittle materials, Frontiers of mechanical engineering, 12 (2017) 89-98.
[8] L.N. Abdulkadir, K. Abou-El-Hossein, A.I. Jumare, M.M. Liman, T.A. Olaniyan, P.B. Odedeyi, Review of molecular dynamics/experimental study of diamond-silicon behavior in nanoscale machining, The International Journal of Advanced Manufacturing Technology, 98 (2018) 317-371.
[9] L. Chen, A. Ahadi, J. Zhou, J.-E. Ståhl, Modeling effect of surface roughness on nanoindentation tests, Procedia CIRP, 8 (2013) 334-339.
[10] S. Hatefi, K. Abou-El-Hossein, Review of single-point diamond turning process in terms of ultra-precision optical surface roughness, The International Journal of Advanced Manufacturing Technology, 106 (2020) 2167-2187.
[11] Z.-C. Lin, Z.-D. Chen, J.-C. Huang, Establishment of a cutting force model and study of the stress–strain distribution in nano-scale copper material orthogonal cutting, The International Journal of Advanced Manufacturing Technology, 33 (2007) 425-435.
[12] V.P. Astakhov, J.P. Davim, Machining: fundamentals and recent advances, Ecological machining: near-dry machining. Springer, Berlin, (2008).
[14] A. Panda, A.K. Sahoo, A.K. Rout, Investigations on surface quality characteristics with multi-response parametric optimization and correlations, Alexandria Engineering Journal, 55(2) (2016) 1625-1633.
[15] Y.D. Yan, W.T. Liu, Z.J. Hu, X.S. Zhao, J.C. Yan, Effect of Sample Materials on the AFM Tip-Based Dynamic Ploughing Process, Advanced Materials Research, 314 (2011) 492-496.
[16] W. Liu, Y. Yan, Z. Hu, X. Zhao, J. Yan, S. Dong, Study on the nano machining process with a vibrating AFM tip on the polymer surface, Applied Surface Science, 258(7) (2012) 2620-2626.
[17] M. Lai, X. Zhang, F. Fang, Y. Wang, M. Feng, W. Tian, Study on nanometric cutting of germanium by molecular dynamics simulation, Nanoscale research letters, 8 (2013) 1-10.
[18] P.-z. Zhu, Y.-z. Hu, T.-b. Ma, H. Wang, Study of AFM-based nanometric cutting process using molecular dynamics, Applied Surface Science, 256(23) (2010) 7160-7165.
[19] X. Jin, W. Unertl, Submicrometer modification of polymer surfaces with a surface force microscope, Applied physics letters, 61(6) (1992) 657-659.
[20] Y. He, Y. Geng, Y. Yan, X. Luo, Fabrication of nanoscale pits with high throughput on polymer thin film using afm tip-based dynamic plowing lithography, Nanoscale Research Letters, 12 (2017) 1-11.
[21] G. Xiao, Y. He, Y. Geng, Y. Yan, M. Ren, Molecular dynamics and experimental study on comparison between static and dynamic ploughing lithography of single crystal copper, Applied Surface Science, 463 (2019) 96-104.
[22] H. Liu, Y. Guo, D. Li, J. Wang, Material removal mechanism of FCC single-crystalline materials at nano-scales: Chip removal & ploughing, Journal of Materials Processing Technology, 294 (2021) 117106.
[23] Y. Yan, Y. He, G. Xiao, Y. Geng, M. Ren, Effects of diamond tip orientation on the dynamic ploughing lithography of single crystal copper, Precision Engineering, 57 (2019) 127-136.
[24] S. Baqain, Investigations into AFM-tip based vibration-assisted nanomachinin, Cardiff University, 2022.
[25] P. Zhang, X. Li, J. Zhang, Y. Zhang, X. Huang, G. Ye, Study on Chip Formation Mechanism of Single Crystal Copper Using Molecular Dynamics Simulations, Nanoscale Research Letters, 17(1) (2022) 91.
[26] H. Li, X. Peng, C. Guan, H. Hu, Molecular dynamics simulation of the nano-cutting mechanism of a high-phosphorus NiP coating, Journal of Materials Research and Technology, 24 (2023) 8109-8120.
[27] J. Wang, Y. Geng, Z. Li, Y. Yan, X. Luo, P. Fan, Study on the vertical ultrasonic vibration-assisted nanomachining process on single-crystal silicon, Journal of Manufacturing Science and Engineering, 144(4) (2022) 041013.
[28] A.R. Norouzi, M. Tahmasebipour, Effect of AFM Cantilever Geometry on the DPL Nanomachining process, ADMT Journal, 9(4) (2016) 75-80.
[29] M.K. Moutlana, S. Adali, Fundamental frequencies of a nano beam used for atomic force microscopy (AFM) in tapping mode, MRS Advances, 3(42-43) (2018) 2617-2626.
[30] A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. in't Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Computer Physics Communications, 271 (2022) 108171.
[32] E.-c. Jeon, Y.-H. Lee, T.-J. Je, Analysis of size effect of nano scale machining based on normal stress and indentation theories, Journal of the Korean Society of Mechanical Engineers, 17(6) (2018) 1-6.
[33] M.M. Jalili, H. Tavari, Investigation and optimization of parameters affecting surface roughness in single crystal copper nanomachining process using molecular dynamics method, IJME journal, 8(10) (2021) 49-60, in Persian.
[34] J. Zhang, Z. Wang, Y. Yan, T. Sun, Concise review: recent advances in molecular dynamics simulation of nanomachining of metals, Current Nanoscience, 12(6) (2016) 653-665.
[35] J.C. Wang, J.M. Zhang, N. Li, Y.P. Kou, Effect of potential function on molecular dynamics simulation of copper processing, Key Engineering Materials, 407 (2009) 368-371.
[36] A. Oluwajobi, X. Chen, The effect of interatomic potentials on the molecular dynamics simulation of nanometric machining, International Journal of Automation and Computing, 8 (2011) 326-332.
[37] S. Foiles, M. Baskes, M.S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Physical review B, 33(12) (1986) 7983.
[38] A.P. Markopoulos, I.K. Savvopoulos, N.E. Karkalos, D.E. Manolakos, Molecular dynamics modeling of a single diamond abrasive grain in grinding, Frontiers of Mechanical Engineering, 10 (2015) 168-175.
[39] Q. Pei, C. Lu, F. Fang, H. Wu, Nanometric cutting of copper: A molecular dynamics study, Computational materials science, 37(4) (2006) 434-441.
[40] Y. Li, M. Shuai, J. Zhang, H. Zheng, T. Sun, Y. Yang, Molecular dynamics investigation of residual stress and surface roughness of cerium under diamond cutting, Micromachines, 9(8) (2018) 386.
[41] J. Stufken, Tagucbi Methods: A Hands-On Approach, in, Taylor & Francis, 1994.