بررسی ارتعاشات غیرخطی کوپل پره الاستیک روتور بالگرد و تحلیل فرکانسهای فلاتر

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مکانیک، دانشگاه تبریز، تبریز، ایران

چکیده

ناپایداری آیروالاستیکی در پره‌ها از مهمترین عوامل و منابع ناپایداری در روتور بالگردها محسوب می‌شوند که از جمله این ناپایداری‌ها، فلاتر می‌باشد. در این مقاله به منظور بررسی فلاتر پره و ارتباط آن با پارامترهای سازه‌ای روتور، معادلات دیفرانسیل جزئی غیرخطی کوپل حاکم بر پره الاستیک دوار روتور بالگرد با فرض تیر اویلر-برنولی تحت اثر نیروهای آیرودینامیکی در حالت هاور با استفاده از اصل همیلتون استخراج شده و با اعمال روش گالرکین به معادلات دیفرانسیل غیرخطی معمولی تبدیل می‌شوند و سپس معادلات بدست آمده برای مقادیر اغتشاشی کوچک حول شرایط حالت دائم خطی می‌گردند. با فرض اینکه پاسخ بصورت هارمونیک باشد، فرکانس‌های طبیعی پره در سه محور حرکتی محاسبه شده و ارتباط فرکانس طبیعی و فرکانس فلاتر پره با پارامترهای سازه‌ای و آیرودینامیکی نشان داده می‌شود. با استفاده از شبیه‌سازی عددی، نتایج برای دو نوع پره سفت و پره نرم با مشخصات معین برحسب پارامترهای مختلف از جمله زاویه پیچش پره، زاویه پیش‌مخروطی و سرعت چرخش روتور برای شکل مود اول ترسیم شده و اثر هر کدام از پارامترهای مذکور بر روی فرکانس فلاتر و نیز ناحیه پایداری پره مورد تجزیه و تحلیل قرار می‌گیرد. نشان داده می‌شود با افزایش صلبیت پره، فرکانس فلاتر افزایش یافته و سیستم پایدار خواهد بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the nonlinear coupled vibrations of elastic blade of helicopter and analysis of flutter frequencies

نویسندگان [English]

  • mousa rezaee
  • mojtaba rezayi
university of tabriz
چکیده [English]

Aeroelastic instability in blades is one of the most important sources of instability in helicopter rotors, and the most critical of these instabilities is flutter. In this paper, in order to investigate the blade flutter and its relationship with the rotor structural parameters, using the Hamilton's principle and considering the Euler-Bernoulli beam theory, the coupled nonlinear partial differential equations governing the rotating elastic blade of a helicopter in the hover flight mode are extracted and converted into a set of ODEs by applying Galerkin method. Then the obtained equations for small perturbations are linearized around the steady state conditions. assuming the harmonic response, the natural frequencies of the blade in three motion axes are calculated and the relationship between the natural frequency and flutter frequency of the blade with structural and aerodynamic parameters are shown. Using numerical simulation, the results for two types of soft and stiff blades with given characteristics in terms of different parameters such as blade twist angle, pre-cone angle and rotation speed of rotor for the first mode shape are extracted. Finally, the effect of each of the mentioned parameters on the flutter frequency and also, the blade stability region is analyzed. It is shown that by increasing the blade stiffness, the flutter frequency will increase and the system will be stable.

کلیدواژه‌ها [English]

  • Elastic Blade
  • Flutter
  • Helicopter Rotor
  • Aeroelastic
  • Instability
[1] J.C. Houbolt, G.W. Brooks, Differential equations of motion for combined flapwise bending, chordwise bending, and torsion of twisted nonuniform rotor blades, National Advisory Committee for Aeronautics, 1957.
[2] R.A. Ormiston, D.H. Hodges, Linear Flap‐Lag Dynamics of Hingeless Helicopter Rotor Blades in Hover, Journal of the American Helicopter Society, 17(2) (1972) 2-14.
[3] D.H. Hodges, R.A. Ormiston, Nonlinear equations for bending of rotating beams with application to linear flap-lag stability of hingeless rotors. NASA TM X-2770, NASA Technical Memorandum, Washington, DC,  (1973).
[4] D.H. Hodges, E.H. Dowell, Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades. NASA TN D-7818, NASA Technical note, Washington, DC,  (1974).
[5] D.H. Hodges, R.A. Ormiston, Stability of elastic bending and torsion of uniform cantilever rotor blades in hover with variable structural coupling. NASA TN D-8192, NASA Technical note, Washington, DC,  (1976).
[6] K. Subrahmanyam, K. Kaza, G. Brown, C. Lawrence, Nonlinear vibration and stability of rotating, pretwisted, preconed blades including coriolis effects, Journal of aircraft, 24(5) (1987) 342-352.
[7] B. Panda, I. Chopra, Dynamic stability of hingeless and bearingless rotors in forward flight, Computers & Mathematics with Applications, 12(1) (1986) 111-130.
[8] A. Castillo Pardo, I. Goulos, V. Pachidis, Modelling and analysis of coupled flap-lag-torsion vibration characteristics helicopter rotor blades, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 231(10) (2017) 1804-1823.
[9] F. Liang, Z. Li, X.-D. Yang, W. Zhang, T.-Z. Yang, Coupled bending–bending–axial–torsional vibrations of rotating blades, Acta Mechanica Solida Sinica, 32 (2019) 326-338.
[10] O. Ozdemir Ozgumus, M.O. Kaya, Formulation for flutter and vibration analysis of a hingeless helicopter blade in hover: Part I, Aircraft Engineering and Aerospace Technology, 79(2) (2007) 177-183.
[11] O.O. Ozgumus, M.O. Kaya, Formulation for flutter and vibration analysis of a hingeless helicopter blade in hover: part II. Results of flutter stability and vibration analysis of a hingeless helicopter blade in hover, Aircraft Engineering and Aerospace Technology, 79(3) (2007) 231-237.
[12] J. Zeng, C. Zhao, H. Ma, B. Wen, Dynamic modeling and coupling characteristics of rotating inclined beams with twisted-shape sections, Frontiers of Mechanical Engineering, 15 (2020) 374-389.
[13] H. Han, D. Cao, L. Liu, J. Gao, Y. Li, Free vibration analysis of rotating composite Timoshenko beams with bending-torsion couplings, Meccanica, 56 (2021) 1191-1208.
[14] M. Amoozgar, H. Shahverdi, Aeroelastic stability analysis of curved composite blades in hover using fully intrinsic equations, International Journal of Aeronautical and Space Sciences, 20 (2019) 653-663.
[15] P. Sarker, U.K. Chakravarty, On the dynamic response of a hingeless helicopter rotor blade, Aerospace Science and Technology, 115 (2021) 106741.
[16] I. Chopra, A. Datta, Helicopter dynamics, ENAE, 633 (2011) 79-114.
[17] A. Datta, Fundamental understanding, prediction and validation of rotor vibratory loads in steady-level flight, University of Maryland, College Park, 2004.
[18] A.H. Nayfeh, D.T. Mook, Nonlinear oscillations, John Wiley & Sons, 2008.
[19] L. Meirovitch, Fundamentals of vibrations, Waveland Press, 2010.
[20] D.J. Inman, Vibration with control, John Wiley & Sons, 2017.
[21] E.H. Dowell, A modern course in aeroelasticity, Springer Nature, 2021.